Search published articles


Showing 440 results for Oil

F. Mahmoodi, R. Jafari, H. R. Karimzadeh, N. Ramezani,
Volume 19, Issue 71 (6-2015)
Abstract

This study aimed to evaluate the performance of TM satellite data acquired in June 2009 to map soil salinity in southeast of Isfahan province. Ground salinity data (EC) was collected within 9 pixels, covering an area of approximately 8100 m2 using stratified random sampling technique at 53 sample sites. Spectral indices including TM bands, BI, SI1, SI2 and SI3, PC1, PC2, PC3 and also multiple linear regression modeling and maximum likelihood classification techniques were applied to the geometrically corrected image. Results of regression analysis showed that the TM band 4 had the strongest relationship with EC data (R2=0.48) and also the relationship of the modeling image using TM 3, TM 4, TM5 and PC3 was significant at the 99% confidence level. The accuracy assessment of the stratified TM4 and modeling image into five classes including 0-4, 4-20, 20-60, 60-100 and EC>100 ds/m indicated that there was more than 86% agreement with the field measurements of EC data. Therefore, it can be concluded that the discretely classified salinity maps have higher accuracy than regression methods for identifying broad areas of saline soils, and can be used as appropriate tools to manage and combat soil salinization.


S. Rahimi, M. Afyuni, A. H. Khoshgoftarmanesh, M. Noruzi,
Volume 19, Issue 71 (6-2015)
Abstract

Management of organic and inorganic treatments may have positive or negative effects on soil quality, plant growth and human nutrition. The objectives of this study were to determine the effects of organic and inorganic zinc fertilizer application on soil quality indicators and wheat yield. This research was conducted at Agricultural Research Station Roudasht, Isfahan, Iran. Sewage sludge and cow manure (5 and 10 t/ha), ash rubber (1 t/ha), powder rubber (200 kg/ha), ZnSO4 (40 kg/ha) were applied and wheat was cultivated. Soil samples were collected at tilling and harvest stages. After taking samples and measurements of the soil parameters, we determined the critical limits for each category and class rating for the each soil parameters, and the soil quality index was calculated. The results showed sewage sludge and rubber ash were significantly effective in increasing soil bioavailable Zn compared to other treatments. Application of sewage sludge and cow manure at 10 ton/ha improved soil quality. The expanded soil quality index can help better understand the effect of fertilizers on soil. A positive and significant relationship between soil quality indicators and Zn uptake and wheat yields was also observed. Our results indicate that addition of 10 t/ha sewage sludge as fertilizer can significantly improve soil quality, supplying the necessary amount of Zn for wheat growth.


A. R. Vaezi, A. Vatani,
Volume 19, Issue 71 (6-2015)
Abstract

Rill erosion is the detachment and transport of soil particles by concentrated flow of runoff. It is the most common form of water erosion in the hill slopes. Rill erodibility is the rate at which soil particle is detached and transported by shear force of the concentrated flow. The study was conducted to determine the rill erodibility in different soil textures in Zanjan province using a rainfall simulator. To this end, samples of eight soil textures consisting of clay, clay loam, silty loam, sandy clay loam, sandy loam, loamy sand, and sandy were collected from land surface and transported to small plots (120 cm  100 cm) on a sloped uniform land (10%). The plots were exposed to five simulated rainfalls with a constant intensity of 60 mm h-1 for one hour. Based on the results, there was a significant difference among the soil textures in the rill erodibility (p< 0.01). Rill erodibility of the soils significantly correlated with mineral fraction (sand, clay, gravel) and exchangeable sodium percentage (ESP). With an increase in sand and gravel percentage, soil infiltration rate strongly increased and consequently production of the concentrated flow steadily decreased. Multiple regression analysis indicated that the rill erodibility in the soils was remarkably related to ESP (R2= 0.85, P< 0.01). Clay soil showed to have the highest rill erodibility among the soil textures due to higher exchangeable sodium percentage (ESP= 13).


M. Karamian, V. Hosseini,
Volume 19, Issue 71 (6-2015)
Abstract

Soil is one of the most important components in forests and distinguishing soil types and soil capability are first steps in forest management. The main aim of this study was to determine relationship between slope aspect and position, and chemical properties of the soil. Soil sampling was done in Tang-e-Dalab in Ilam province which is a part of southern Zagros. Samples were collected in both northern and southern slopes of oak stand (Quercus brantii). In each slope, three transects 50m apart were sampled. Overall number of samples was 60. After data normalization, the means were compared by Duncan test. Slope aspects influenced organic carbon and total nitrogen of soil. These parameters were higher in northern slope than southern one. Slope position showed a significant effect on C, N and P. Also, concentration of C, N and P were increased by moving down the position. Most amounts of C, N and P were 5.84%, 0.58% and 108.19 mg/kg in bottom, middle and bottom of northern aspect, respectively. The least amounts of C, N and P were 3.31%, 0.24% and 37.83 mg/kg in bottom, middle of southern aspect and top of northern aspect, respectively. The results of this study confirmed that nutrient concentration in northern slope was more than southern slope and nutrient concentration in soil was increased by moving downward.


M. Noshadi, M. Jamaldini, A. Sepaskhah,
Volume 19, Issue 71 (6-2015)
Abstract

In this research, the hydraulic behavior of two kinds of envelopes including synthetic envelope, PP450 and gravel envelope with USBR standard in two soil tank models with silty loam texture was investigated. Three water heads including 55, 75 and 105 cm (water logging) from drain level were used. The discharge of pipe drain in the steady state condition for gravel envelope and at 55, 75 and 105 cm water heads was 188.9, 172.0 and 897.0% more than those in PP450, respectively. Envelope hydraulic conductivity rates at gravel envelope for 55, 75 and 105 cm water heads were 24.6, 14.0 and 21.2 times higher than those in PP450, respectively, and gradient ratios in these water heads for gravel envelope were 14.5%, 2.8% and 14.2% lower than those for synthetic envelope. There were also different behaviors in the two kinds of envelopes for hydraulic conductivity and entrance resistance of pipe and envelope in 55 and 75 cm water heads relative to 105 cm. In general, according to the measured parameters in this research, gravel envelope showed a better performance.


B. Khalili Moghadam, M. Afyuni, A. Jalalian, K. C. Abbaspour, A. A. Dehghani,
Volume 19, Issue 71 (6-2015)
Abstract

With the advent of advanced geographical informational systems (GIS) and remote sensing technologies in recent years, topographic (elevation, slope, and aspect) and vegetation attributes are routinely available from digital elevation models (DEMs) and normalized difference vegetation index (NDVI) at different spatial (watershed, regional) scales. This study explores the use of topographic and vegetation attributes in addition to soil attributes to develop pedotransfer functions (PTFs) for estimating soil saturated hydraulic conductivity in the rangeland of central Zagros. We investigated the use of artificial neural networks (ANNs) in estimating soil saturated hydraulic conductivity from measured particle size distribution, bulk density, topographic attributes, normalized difference vegetation index (NDVI), soil organic carbon (SOC), and CaCo3 in topsoil and subsoil horizon. Three neural networks structures were used and compared with conventional multiple linear regression analysis. The performances of the models were evaluated using spearman’s correlation coefficient (r) based on the observed and the estimated values and normalized mean square error (NMSE). Topographic and vegetation attributes were found to be the most sensitive variables to estimate soil saturated hydraulic conductivity in the rangeland of central Zagros. Improvements were achieved with neural network (r=0.87) models compared with the conventional multiple linear regression (MLR) model (r=0.69).


M. Farzadian, S. Hojati, Gh. A. Sayyad , N. Enayatizamir,
Volume 19, Issue 72 (8-2015)
Abstract

One of the major problems associated with petroleum-contaminated soils is water repellency, especially in arid regions of the world. Hence, a variety of methods such as clay addition has been proposed to improve the hydrophobicity of soils. This research was conducted to evaluate the influence of zeolite application on water repellency of an oil-contaminated soil from Khuzestan Province under various treatments including initial soil moisture content (0, 10, 20, and 30 weight %), the amount of applied zeolite (2, 4 and 8 weight %), size (25-53 and <2 μm), and exchangeable cation (Sodium and Calcium). The hydrophobicity of soil sample was determined using Water Drop Penetration Time (WDPT) method. The results showed that by increasing the amount of applied mineral WDPT decreased, where the application of 2 percent of zeolite led to the reduction of WDPT by about 27 percent less than the control. The results also indicated that soils treated with sodium-saturated zeolite had less WDPT than the calcium-treated samples, where the average of WDPT in sodium and calcium treatments decreased by 23% and 5% compared with the control, respectively. The initial moisture content of 30 percent showed the best performance with the decreasing WDPT of about 67 percent. Furthermore, the effect of mineral particle sizes showed a meaningless reduction in WDPT.
M. Barzin, H. Kheirabadi, M. Afyuni,
Volume 19, Issue 72 (8-2015)
Abstract

Soil pollution and accumulation of heavy metals in soils and crops are the most important bioenvironmental problems that threaten the life of plants, animals and humans. This study was conducted to explore contamination of heavy metals in soils of Hamadan province. A total of 286 composite surface soil samples (0-20 cm) were collected thoroughout the province. After preparation of the samples, the total contents of Zn, Pb, Cu, and Ni in soil samples were extracted using HNO3. Total contents of heavy metals were measured by ICP. Contamination factor results showed that most samples were moderately polluted and contamination factor for lead was highly polluted. Interpolated distribution map of contamination factors (CF) and pollution load index (PLI) of the heavy metals were prepared using GIS. The overlap of CF and PLI maps with geology and land use maps indicated that the concentrations of Ni, Pb, Zn, and Cu have been controlled by natural factors such as parent material, but agricultural activities according to excessive consumption of animal manure and chemical fertilizers can increase most of these elements in soil.
A. Veisitabar, A. Hemmat, M. R. Mosaddeghi,
Volume 19, Issue 72 (8-2015)
Abstract

Considering soil compaction problem in sugarcane fields due to using heavy harvester and haulout equipment under unsuitable moisture conditions, this research aims to assess soil compaction in sugarcane fields located in Da'balKhazaei Plantation unitofSugarcane Development and By-product Company, Ahvaz. Undisturbed soil samples from the furrow (wheel tracks) were collected for measuring soil water content and bulk density. Considering the changes in soil texture of sugarcane fields, for expressing the degree of soilcompactness, in addition to soil bulk density (BD), relative bulk density (BD divided by reference BD) was also determined. The change in soil mechanical resistance with depth was determined by a cone penetrometer. Results showed that most of soil BD values measured in the sugarcane fields were in the range of small root development scale (high limitation). Comparingthe calculated RBD values with optimum value (0.85), it was observed that most of the values were higher than the optimum values recommended for root growth. This shows excessivesoil compaction in the sugarcane fields. The values of cone indices measured in soil profiles indicated that most of the values were higher than either limiting (2 MPa) or critical (3 MPa) values for root growth. Therefore, for improving soil physical fertility and achieving sustainability in crop production, management of farm machinery traffic in sugarcane fields, especially at the harvest time, needs to be reconsidered.
M. Bahari, A. Shahnazari,
Volume 19, Issue 72 (8-2015)
Abstract

Transporting borrow materials for proper infrastructure of water channels to bear the load of such structures is important in the development plans. Therefore, in this research clay nanocomposite material with a weight ratio of %1 was added to the soil. Soil sample was taken from the bed of the C25 canal (distributary of GanjAfrooz diversion dam within Alborz project area) at various intervals and the depth of 1 meter. Unconfined compression strength and consolidation tests were performed on the selected soil. The results showed that the addition of nanoclay to the soil increased the rate of shear resistance, cohesion property and compressibility of soil, respectively, equal to 14.13, 14.13and 82.76 percent. Also, angle of failure and ultimate void ratio decreased. As a result, the addition of nanoclay to the soil makes soil strength and stability greater and there are no problems caused by bed erosion and transporting of borrow material for infrastructure of channel.
S. Heydari, S. Oustan, M.r. Neyshabouri, A. Reyhanitabar,
Volume 19, Issue 72 (8-2015)
Abstract

Consequences of heavy metal accumulation in soils are of great concern. One way of decontaminating heavy metals from soils is using chelating agents, particularly EDTA. In this research, three contaminated soils (with total concentration of these metals of 10.5, 55.8 and 80.6 mmol kg-1) were collected from the surface layer of the lands surrounding a zinc-lead smelting plant in Zanjan province. The extent of Zn, Pb and Cd release by Na2H2EDTA (100 mmol kg-1 of dry soil) from these soils in column leaching experiments (both continuous and pulse addition methods) assembled into half of saturated hydraulic conductivity was assessed. In preliminary experiments, the leaching was stopped due to a drop in hydraulic conductivity. Therefore, the continuous addition method was performed with calcium nitrate as the background solution and the pulse addition method was conducted using this background solution coupled with pH adjustment to 8. Based on the results, the percentage removal of Cd as well as Pb was relatively the same for the two addition methods while the removal of Zn was 13% on average higher in the continuous addition method than in the pulse addition method. For both methods, the removal efficiencies followed the order of complex stability constants (as Pb>Zn>Cd) in a limited concentration range of EDTA to complex heavy metals. Furthermore, in contrast to Cd and Pb, a direct linear relationship was found between the percentage removal of Pb and its total amount in the soils. Surprisingly, the Pb concentration was on average only about one-twentieth of the Zn concentration. The breakthrough curves of both methods showed the mobility order of Cd>Zn>Pb. In general, it seems that the removal pattern of soil heavy metals is dependent not only on the soil type but also on the removal method.


E. Chavoshi, M. Afyuni, M. A. Hajabbasi,
Volume 19, Issue 72 (8-2015)
Abstract

Transport of fluoride and consumption of groundwater with excess fluoride concentrations poses a health threat to millions of people around the world. The objective of this study was to simulate transport of fluoride (F) using HYDRUS-1D model. The study was conducted in lysimeters at Lavark research station site in Isfahan. The treatments consisted of two concentrations of F (157 and 315 mg kg-1). The duration of the study was 125 days. Some of soil physical and chemical properties, soluble F and total F concentration were determined during the study. The results showed the transport of F in calcareous soil profiles. This may be due to the high pH and desorption of F ion as a result of repulsion by the more negatively charged soil surfaces. The highest concentration of total F and water soluble F were observed in the 10 cm surface soil layer. The concentration of F decreased with increased soil depth. The correlation coefficient was significant between the water soluble fluoride and the total fluoride (1% level). Also, the difference between the observed t- value and a critical value on the t distribution is statistically insignificant. It showed that the model simulated successfully water soluble F concentration in the soil profile.


J. Abedi Koupai, S. Soltanian, M. Gheysari,
Volume 19, Issue 72 (8-2015)
Abstract

Lack of knowledge on soil geotechnical properties can cause many problems in the construction and maintenance of irrigation and drainage networks. In general, all of unconventional soils such as gypsiferous soils can cause some problems to irrigation canals. Some studies have been conducted on a variety of problematic soils, but still there is a need for more research activities and field studies. This research was conducted to study the impact of adding perlite and pumice (5%, 10% and 15%) and micro silica (1%, 5% and 10%) on some mechanical properties of soil including shear stress, bearing capacity and Atterberg limits. Statistical analysis was done to compare their averages (P<0.01). Results showed that micro silica had the most effect on shear, bearing and condensation parameters and Atterberg limits of gypsiferous soil, and it improved these parameters of soil. Pumice improved shear, bearing and condensation properties of gypsiferous soil. Perlite reduced the shear, bearing and condensation properties of gypsiferous soil.


R. Mirzaei, K. Rahimi, H. Ghorbani, N. Hafezimoghades,
Volume 19, Issue 73 (11-2015)
Abstract

Determining the spatial distribution of different contaminants in soil is essential for the pollution assessment and risk control. Interpolation methods are widely used to estimate the concentrations of the heavy metals in the unstudied sites. In this study, the performances of interpolation methods (inverse distance weighting, local polynomials and ordinary Kriging and radial basis functions) were evaluated to estimate the topsoil contamination with copper and nickel in Golestan Province. 216 surface soil samples were collected from Golestan province, and their Cu and Ni concentrations were measured. Soil contamination was determined using different interpolation methods. Cross validation was applied to compare the methods and estimate their accuracy. The results showed that all the tested interpolation methods have an acceptable prediction accuracy of the mean content for soil heavy metals. RBF-IMQ and IDW1 methods had the lowest RMSE, whereas RBF-TPS method with the largest RMSE estimated a larger size for the polluted area. The greater the weighting power, the larger the polluted area estimated by IDW. Compared with the ‘‘sample ratio over the pollution limits” method, the polluted areas of Cu and Ni were reduced by 8.38% and 6.14%, respectively.


Mh. Rasouli-Sadaghiani, S. Ejlali , S. Ashrafi Saeidlou,
Volume 19, Issue 73 (11-2015)
Abstract

Earthworms are an important component of soil fauna because of their fundamental impact on soil physical, chemical and biological properties. To evaluate the effects of earthworms on some soil chemical properties as well as plant growth indicators, an experiment was carried out in a completely randomized design in greenhouse conditions. The first factor involved the presence or absence of earthworms (Eisenia foetida), the second factor was different organic matter including control (no organic materials), pruning waste compost of apple and grape (PWC), wheat straw (WS), Herbal extracts waste (HE), pruning waste (PW) and the third factor was the presence or absence of corn plant for evaluating rhizosphere soil. At the end of growing period, some soil chemical properties including total nitrogen, organic carbon, ammonium, nitrate and plant growth indicators were measured. The results showed that application of organic matter and earthworm inoculation had significant effects on soil chemical properties. The pruning waste compost (PWC) treatment showed the largest impact on ammonium and nitrate content (1.7 and 3.3 times compared to control treatment, respectively). In pruning waste compost (PWC) treatment, organic carbon amount in rhizospheric soil increased from 0.9 at non-rhizosphere to 1.32 %. The presence of earthworm improved plant growth parameters including shoot and root dry weight by 34% and 30%, respectively, compared to earthworm absence condition. Soil ammonium and nitrate contents at earthworm presence increased 32% and 49%, respectively. Therefore, application of organic matter with earthworm inoculation had better results in comparison with no earthworm inoculation.


M. Kermanpour, M. R. Mosaddeghi, M. Afyuni , M. A. Hajabassi,
Volume 19, Issue 73 (11-2015)
Abstract

Petroleum pollution is an important environmental issue in most of the countries especially those have an oil industry. This study was conducted to investigate the effect of petroleum pollution on soil water repellency and its relation to soil structural stability in Bakhtiardasht area, Isfahan. Polluted and adjacent non-polluted locations were selected to be representative in the green space around the Isfahan Oil Refinery. Soil water repellency was assessed using water drop penetration time (WDPT) in the polluted locations. Soil sample with least aggregates disturbance were collected and selected soil physical and chemical properties were measured. Soil structural stability was evaluated using the wet-sieving method and mechanically dispersible clay (MDC) structural stability indices of mean weight diameter (MWD) and geometric weight diameter (GMD) of aggregates and MDC were then calculated. Results showed that the positive effect of petroleum pollution on the MWD and GMD become significant. Negative impact of petroleum pollution on MDC was also significant. Increment of total petroleum hydrocarbons (TPHs) increased the soil water repellency. A positive correlation was observed between soil water repellency and GMD. However, TPHs concentrations greater than 6.4% decreased the MWD and GMD presumably due to anionic repulsion between clay particles and hydrocarbon functional groups. Although greater water repellency increased soil structural stability in the polluted locations when compared to control locations, however, diminished water retention of polluted soil has created an unfavorable condition for the green space in the area.


P. Ahmadpour, M. Soleimani,
Volume 19, Issue 73 (11-2015)
Abstract

Cadmium (Cd) is a metal with high toxicity and solubility in water, which is a serious environmental threat to human health. Phytoremediation is an environment-friendly method and a promising new and cost effective technology that uses plants to clean organic and inorganic contaminated media. This study was conducted to evaluate the potential of Jatropha curcas for remediation of soils contaminated with Cd. Seedlings were planted in the soil spiked with Cd in amounts of 0, 25, 50, 75, 100 and 150 mg kg-1 (Cd0, Cd25, Cd50, Cd75, Cd100 and Cd150) for a period of five months. Biocentration factor (BCF, metal concentration ratio of plant roots to soil), translocation factor (TF, metal concentration ratio of plant shoots to soil) and removal efficiency (RE, total metal removed by plant biomass to total metal loaded in soil) were determined. Cd concentrations among plant parts were in the following trend: roots>stems>leaves. The highest total Cd concentration (up to 1100 mg kg-1) and the highest RE were found in Cd150 and Cd25, respectively. BCF and TF of the plant were more and less than 1, respectively. Hence, although this species has a potential to be used in phytostabilization of Cd-contaminated soil, more researches in the field condition are needed.


H. R. Eshghizadeh, M. Kafi, A. Nezami, A. H. Khoshgoftarmanesh, M. Karami,
Volume 19, Issue 73 (11-2015)
Abstract

This study was conducted to determine some mineral content concentrations in soils and plants of three elevation classes (1500, 2200 and 3000m) and two phenological stages of flowering and seedling in north facing slopes of Sabalan rangelands. Soil samples from the depth of 20cm and plant samples using 1×1m plots with 10 replications were collected. After sample preparation, the concentrations of minerals such as calcium, phosphorous, sodium, potassium, ion, copper, zinc and magnesium were determined using spectrophotometer and flame photometer. Data was analyzed by SAS9.1 software using a Completely Randomized Design with a Generalized Linear Model procedure. Results showed that elevation had a significant effect on Ca, Fe, Cu, Zn and Mn of soil and P, Na, K, Mg and Mn of plants in the study areas (P&le0.05). Growing stages had a significant effect on all elements of plants except Ca (P&le0.05). Moreover, results showed that in three elevation classes the high demand minerals' concentrations were higher at the starting seedling stage in comparison with the flowering stage. In contrast, the low demand minerals' concentrations in three elevation sites were higher in the flowering stage in comparison with seedling stage. Interaction effect of elevation and growing stage was also significant in relation to all elements except Ca (P&le0.05).


R. Valizadeh Yonjalli, F. Mirzaei Aghjehgheshlagh, A. Ghorbani,
Volume 19, Issue 73 (11-2015)
Abstract

This study was conducted to determine some mineral content concentration in soil and plant of three elevation classes (1500, 2200 and 3000m) and two phenological stages of flowering and seedling start in north-facing slopes of Sabalan rangelands. Soil samples from the depth of 20cm and plant samples using 1×1m plots with 10 replications were collected. After sample preparation, the concentrations of minerals such as calcium, phosphorous, sodium, potassium, ion, copper, zinc and magnesium were determined using spectrophotometer and flame photometer. Data was analyzed by SAS9.1 software using Completely Randomized Design with a Generalized Linear Model procedure. Results showed that elevation had a significant effect on Ca, Fe, Cu, Zn and Mn of soil and P, Na, K, Mg and Mn of plants in the study areas (P&le0.05). Growing stages had a significant effect on all elements of plants except Ca (P&le0.05). Moreover, results showed that in three elevation classes the high demand minerals’ concentration was higher at the starting seedling stage in comparison with the flowering stage. In contrast, the low demand minerals’ concentration in three elevation sites was higher in the flowering stage in comparison with seedling stage. Interaction effect of elevation and growing stage was also significant in relation to all elements except Ca (P&le0.05).


J. Abedi Koupai, K. Norouzian, N. Abbasi,
Volume 19, Issue 73 (11-2015)
Abstract

To improve the engineering properties of fine-grained soils, the use of various additives has always been considered important. In this study, the effect of hydrated lime on compressive strength of clay soils was studied in both optimum moisture and saturated modes. For this purpose, by adding varying amounts of hydrated lime (0, 1, 3and 5%) to the clay, several samples were prepared and tested by the standard proctor and Harvard miniature compaction apparatus. Then the samples were tested for unconfined compressive strength in optimum moisture and saturated modes after different curing days (7, 14, 28 and 90 days). The results showed that by increasing the amount of hydrated lime, the maximum dry unit weight was reduced and the optimum moisture was increased. Increasing the hydrated lime also increased the compressive strength of the soil in both dry and saturated modes and this resistance increase was significantly influenced by cured days and the amounts of hydrated lime. The results showed that the rate of 5% hydrated lime was the maximum compressive strength, but with regard to softening factor, the amount of 3% hydrated lime was determined as the optimum value.



Page 14 from 22     

© 2025 CC BY-NC 4.0 | Journal of Water and Soil Science

Designed & Developed by: Yektaweb