Search published articles


Showing 440 results for Oil

A. Shabani, A. Jahanbazi, S. H. Ahmadi, M. M. Moghimi, M. Bahrami,
Volume 22, Issue 1 (6-2018)
Abstract

In this study, five infiltration models including Kostiakov, Kostiakov-Lewis, Philip, Soil Conservation Service (SCS) and Horton were fitted to the experimental data using the double rings, and the empirical coefficients of these models were determined. Infiltration experiments were conducted in the gravelly sandy loam soil under and between the olive and orange trees in Fasa city, Fars Province, Iran. The results showed that all five models were fitted accurately to the measured data. The accumulated infiltration under the trees was higher than those measured between two trees. Higher infiltration under the tree canopies was probably due to the higher soil organic matter, the lower soil bulk density, and the tree root channeling, which were more pronounced when compared to the small pores in these soils. Despite the positive effect of sand particles on soil infiltration, the big gravel occurrence in soil would decrease the cross section area of water flow path, thereby reducing the infiltration. Therefore, changing the land use and planting olive and orange trees in the gravel soils would increase the infiltration rate and consequently, decrease runoff and erosion rates in such soils.

Sh. Zand-Parsa, S. Parvizi, A. R. Sepaskhah, A. A. Kamgar Haghighi,
Volume 22, Issue 1 (6-2018)
Abstract

In this study, the values of moisture and soil temperature were estimated at different depths and times under unsteady conditions by solving the Richards’ equation in an explicit finite difference method provided in Visual Studio C#. For the estimation of soil hydraulic parameters, including av and nv (coefficients of van Genuchten’s equation) and Ks (saturated hydraulic conductivity), soil moisture and temperature at different depths were measured by TDR probes and the stability apparatus, respectively. The objective function [equal to Root Mean Square Error (RMSE)] was minimized by the optimization of a parameter separately, using the Newton-Raphson method, while, the other parameters were considered as the constant values. Then, by replacing the optimized value of this parameter, the same was done for other parameters. The procedure of optimization was iterated until reaching minor changes to the objective function. The results showed that soil hydraulic parameters (coefficients of van Genuchten’s equation) could be optimized by using the SWCT (Soil Water Content and Temperature) model with measuring the soil water content at different depths and meteorological parameters including the  minimum and maximum temperature,, air vapor pressure, rainfall and solar radiation. Finally, the measured values of soil moisture and temperature were compared to the depth of 70cm in spring, summer, and autumn of 2015. The values of  the  normalized RMSE of soil water content were 0.090, 0.096 and 0.056 at the  soil depths of 5, 35 and 70 cm, respectively, while the values of the normalized RSME of soil temperatures were 2.000, 1.175 and 1.5 oC at these depths, respectively. In this research, the values of soil hydraulic parameters were compared with other previous models in a wider range of soil moisture varying from saturation to air dry condition, as more preferred in soil researches.

A. Ashraf Amirinejad, S. Ghotbi,
Volume 22, Issue 2 (9-2018)
Abstract

The soil quality is defined as the ability of soil to function as an essential part of the human habitat. In this study, the effects of land use change (conversion of forest lands into agricultural lands) on the soil physical quality were studied in the Gilan-e-Gharb region. For this study, soil samples were collected from surface and subsurface layers of both land uses, and the peak and shoulder slope positions, in Miandar and Vidjanan catchments. Soil physical properties such as soil texture and particle size distribution, soil hydraulic conductivity, bulk density, mean weight diameter of aggregates, water holding capacity, and the soil organic carbon content were measured. The results showed that land use change of the forest to agricultural lands resulted in a sharp decline in the soil organic matter (52%) and an increase in silt and sand percentage and soil bulk density. Also, deforestation decreased the mean weight diameter of aggregates (from 0.39 to 0.14 mm in Miandar) and clay percent.  It caused a reduction in the total porosity followed by a decrease of soil water holding capacity, and a decrease in the saturated hydraulic conductivity (from 10.34 to 1.86 cm/h), as well. In general, the results proved that the land use change from forest to agriculture severely decreased soil physical quality and its productivity.

F. S. Tarighat, Y. Kooch,
Volume 22, Issue 2 (9-2018)
Abstract

The effect of broad-leaved forest trees (Alnus glotinusa, Ulmus glabra, Popolus caspica and Parrotia persica) and their canopy position on soil C and N storage and mineraization in the plain forest areas of Noor was investigated. Soil samples were taken from two positions (near and away from the main stem) with the microplots of 30×30×15 cm. Litter (C and N), soil physical (bulk density, texture and water content), chemical (pH, EC, organic C, total N and available Ca), biochemical and biological (N mineralization and microbial respiration) characteristics were measured at the laboratory. Carbon mineralization rate (CMR) was calculated using the equation [incubation time period (hour) ×soil volume (gr) / CO2 amount (mol C)]. Soil C and N storage (ton/ha) was calculated by C and N contents, bulk density, and the soil sampling depth. The results showed that there was no significant difference between the C storage under the studied tree spcies, whereas N storage presented significantly greater amounts, under Alnus glotinusa (0.79 ton/ha) rather than Ulmus glabra, Popolus caspica and Parrotia persica (0.69, 0.45 and 0.21 ton/ha, respectively). The higher values of soil C (0.001 mol C/kg) and N (0.3 ml N/kg) mineralization were significantly recorded under Alnus glotinusa instead of tree species. Soil C and N storage and mineralization process were not affected by the sampling positions. According to the results, soil C and N storage and mineralization were influenced by litter quality and soil chemistry.

P. Rostamizad, V. Hosseini, K. Mohammadi Samani,
Volume 22, Issue 2 (9-2018)
Abstract

Trees crown can be regarded as main factor contributing to the conservation and support of soil in many ecosystems including semiarid forests in Zagross. The aim of this study was to find out the effect of tree crown of pictachio (Pistacia atlantica Desf) on N, OC, P, pH, EC and the texture of the soil. Soil samples were collected in and outside the crown of 5 single pistachio trees on four directions of each tree in a northern slope from the 0-5 cm depth of soil in the Sarvabad region, Kurdistan. The results of this study showed that the amount of the soil organic carbon was decreased from 6.71% in the soil inside tree crowns to 4.73% in the soils outside the tree canopies. The soil inside trees had a higher concentration of soil nitrogen (0.406%) than the one outside (0.224%) the tree crown; the concentration of phosphorus was measured to be 32.7 mg/kg in the soil inside canopy, while it was 21.1 mg/kg in the soil of outside the tree canopy. EC under the tree crowns was more than that outside the canopy. The results, therefore, showed that soil texture was lighter inside the canopy, as compared to outside; however, the acidity of the soil was not affected by tree crowns and no significant differences were observed in different areas of the crown. Therefore, Persian turpentine trees have positive impacts on the soil properties in Zagros forests and eliminating them will lead to the significant loss of soil fertility and greater soil erosion.

E. Esfandiary Ekhlas, M. Nael, J. Hamzei, A. A. Safari Sinegani, M. Sheklabadi,
Volume 22, Issue 2 (9-2018)
Abstract

Evaluation of the ecological sustainability of different cropping systems is crucial to achieve sustainable agriculture. This evaluation is accessible via soil quality assessment. Therefore, to study the mid-term effects of different conservation tillage systems (no tillage and minimum tillage) and cover cropping on the biological indicators of soil quality, a factorial experiment in a completely randomized block design was conducted in Dastjerd region (Hamedan). Three levels of tillage (NT: no tillage, MT: minimum tillage and CT: conventional tillage) and two levels of cover cropping (C1: Lathyrus sativus and C2: no cover crop) were applied for four consecutive years. Soil sampling was performed in the fourth year of experiment in two steps (1- before cover crop plantation, and 2- after harvesting main crop) with three replications. Most indices (total organic carbon, active carbon, basal respiration, phosphatase activity) were significantly affected by cover crop, tillage systems and sampling time, as the highest values were obtained in NT-C1 in time 2 and the lowest ones in CT-C2 in time 1. For instance, after four years application of treatments, the mean active carbon content was increased from 927 mg/kg in the conventional tillage + no cover crop to 1350 mg/kg in the conservation tillage systems + cover crop. Therefore, conservation tillage practices combined with Lathyrus sativus cover crop were shown to be the most appropriate management for soil quality maintenance and improvement.

A. R. Vaezi, Z. Bayat, M. Foroumadi,
Volume 22, Issue 2 (9-2018)
Abstract

Soil erosion by surface runoff introduced as surface erosion is one of the main mechanisms of land degradation in the hill slopes. Slope characteristics including aspect and gradient can control the differences of soil properties along the hillslope. This study was conducted to investigate the effect of slope aspect and gradient on variations of some soil properties in the short slopes. Five hills including both north and south aspects with different gradients (9-10%,
13-16%, 17-22%, 29-31% and 33-37%) were considered in a semi-arid region with 30 ha in area, in the west of Zanjan, northwest of Iran. The hills were weakly covered with pasture vegetation covers. Soil samples were collected along the slopes from two depths (0-5 cm and 5-15 cm) in four positions with 2 m distance along each slope with two replications. A total of 160 soil samples were analyzed for particle size distribution (sand, silt and clay), gravel and bulk density. Surface erosion was determined based on the variation of grain size distribution and bulk density. Differences of the grain size distribution and surface erosion between the two slope aspects and among the slope gradients were analyzed using the Tukey test. No significant difference was found between slope aspects in surface soil erosion. Nevertheless, surface soil erosion was affected by slope gradient in each slope aspect (R2= 0.78, p< 0.05). Surface erosion in the north slopes was more dependent on the slope gradient, as compared to the corresponding south slopes. In the south slopes, surface erosion was affected by the movement of silt particles from soil surface, while in the north slopes, it was significantly affected by the loss of clay particles.

F. Jahanbakhshi, M. R. Ekhtesasi, A. Talebi, M. Piri,
Volume 22, Issue 2 (9-2018)
Abstract

One of the main sources of runoff in arid and semi-arid mountainous highlands is typically composed of before Quaternary formations. Since the structure and lithology of formations are different, varying formations can have different significance in terms of runoff and sediment. The present study aimed to investigate the sediment production potential and the runoff generation threshold on three formations (Shirkooh Granite, Shale, Sandstone and Conglomerate of Sangestan and Taft Limestone) in Shirkooh mountain slopes. The 60 mm/h rainfall intensity with the 40 minute continuity, according to region rainfall records, and the ability of the rainfall simulator were selected as the basis for the study. Field experiments were conducted in dry conditions based on one square meter plot on rocky slopes with a gradient of 20 to 22 percent and a maximum thickness of 30 cm of soil. The results showed that in 60 mm/h rainfall intensity, the minimum rainfall to produce runoff on Sangestan, Shirkooh and, Taft, was 10, 10.7 and 16.7 mm, respectively. The maximum amount of the sediment was measured on Sangestan, Taft and Shirkooh, respectively. Statistical tests related to runoff and sediment production on all three formations confirmed a significant difference at the 5 % level. In terms of the time required to start runoff, the minimum time was for Sangestan, Shirkooh and Taft, respectively. According to the results, in terms of the potential for runoff generation and sediment production, Sangestan, Shirkooh and Taft can be ranked from high to low levels.

A. Fariabi, H. Matinfar,
Volume 22, Issue 3 (11-2018)
Abstract

One of the problems with the traditional mapping of soils is the expert’s opinion, it time-consuming and timely preparation, and the updating of the maps. While digital soil mapping, using different soil-earth models leads to the simplification of the complexity of the soil system. The purpose of this study was to investigate Soil-Environment Inference (SIE) in soil mapping with an emphasis on using the expert knowledge and fuzzy logic. For this purpose, the digital layer of geology and peripheral layers were derived from a digital elevation model including elevation, slope, and curvature of the ground surface, and auxiliary index, which comprised the input data of the SIE model. Then, the fuzzy maps prepared for the five soil types and the final map of soil prediction were created by hardening. The results showed that the SIE model, which used environmental variables, had a high ability to isolate soil types with more detailed compositions of soils with different maternal materials. The comparison of the error matrix showed that the overall accuracy of the derived map of the SIE model was equal to 75%, and the matching of the digital mapping results with conventional mapping accounted for 74.71% of the results. The difference in the compliance rate could be attributed to the difference in the nature of the two methods.

M. Shirmohammadi, A. R. Hossein Pour, Sh. Kiani,
Volume 22, Issue 3 (11-2018)
Abstract

Understanding the distribution of different P forms in soil aggregate fractions is important in evaluating the risk of P run-off and leaching in the agricultural soils. The objective of the present research was to determine the effect of aggregate size on soil phosphorus availability and fractionation in 10 calcareous soils. Micro aggregate (< 0.25 mm), macro aggregate (> 0.25 mm) and whole soil were separated by dry sieving. Olsen P, total P, organic P, and inorganic P fractions in micro aggregate, macro aggregate, and whole soil were determined. Soil inorganic P fraction was  determined by a sequential extraction procedure including: dicalcium phosphate (Ca2-P), octa calcium phosphate (Ca8-P), apatite (Ca10-P), P absorbed by Al oxide (Al-P), P absorbed by Fe oxide (Fe-P) and P incorporated in to Fe oxide (O-P). The results showed that the amounts of (Olsen P), (Ca2-P), (Ca8-P), (Ca10-P), (Organic P), (Al-P), (Fe-P), (O-P) and (Total P) in 70, 60, 40, 40, 60, 70, 60, 50 and 70 percent of soils, respectively, in the micro aggregates were significantly higher than those of the macro ones. Finally, by increasing the P content, particularly the smaller sized aggregates, it was likely that the eroded material would favor greater P loss.

R. Darabi Kandlaji, Shahin Oustan, Nasser Aliasgharzad, N. Najafi,
Volume 22, Issue 3 (11-2018)
Abstract

Nitrification is one of the most active biological processes in the soils receiving ammonium nitrogen. The rate of this process is under the influence of several factors and their interactions. In this study, the effects of ammonium concentration and moisture content on the extent of nitrification in two soil samples named A (Loam) and B (Clay loam), which had been taken, respectively, from Marand and Ahar areas, were investigated. A two-week factorial incubation experiment (25±0.5°C) was conducted in a completely randomized design with three replications. Factors were urea nitrogen at five levels (0, 50, 100, 200 and 400 mg N kg-1), moisture content at three levels (0.55FC-0.60FC, 0.75FC-0.80FC and 0.95FC-FC) and two soil types (A and B). At the end of the experiment, concentrations of ammonium and nitrate as well as the values of pH and EC were determined. Based on the results, average nitrification at 0.55FC-0.60FC was 22 percent lower than that at 0.95FC-FC and no significant difference was observed between 0.75FC-0.80FC and 0.95FC-FC. Nitrification at the treatment of 400 mg N kg-1and 0.55FC-0.60FC was decreased considerably and 25 percent of the added ammonium was accumulated. The average ammonium concentrations did not significantly vary among the levels of 50, 100 and 200 mg N kg-1, but these concentrations were significantly lower than those of 400 mg N kg-1. Moreover, EC and pH values of the soils were significantly increased and decreased in response to the nitrification (0.54 dS m-1 and 0.59 at the application level of 200 mg N kg-1, respectively). On average, the results showed higher nitrification (40.3 mg N kg-1) in the soil A (Loam texture) than the soil B (Clay loam).

A. R. Vaezi, . M. Bagheri, K. Afsahi,
Volume 22, Issue 3 (11-2018)
Abstract

Soil erosion by water is a serious environmental problem, particularly in semi-arid regions. In these areas, water loss strongly affects soil loss as well as soil productivity in the rainfed lands. Determination of appropriate seed density for each tillage direction is vital to achieve high crop yield and to prevent soil and water losses. This study was conducted to investigate the combined effects of tillage direction and plant density on the soil and water losses in a rainfed land. Twelve crop plots with the dimensions of 1.5 m × 5 m were installed to investigate the effect of two tillage directions (up to the down slope and on the contour line), two seed densities (90 and 120 kg h-1), a three replications in a rainfed land with 10% slope steepness. Soil and water losses were measured in each plot during the wheat growth period (from October 2015 to June 2016). Significant differences were found between both tillage direction and plant density in the runoff (P<0.05) and soil loss (P< 0.001). Runoff and soil loss in the up to down slope tillage was 4.16 and 4.08 times bigger than the contour line tillage, respectively. Runoff and soil loss with the seed density of 120 kg h-1­ ­­were 11.25 and 26.32% lower than those with 120 kg h-1­, respectively. This result was associated with the increased cover crop and its control on water flow and the enhancement of water retention in the soil. There was no significant interaction between tillage direction and plant density in the runoff and soil loss. The importance of tillage direction in the soil and water loss was very larger than that of the plant density. The application of 120 kg ha-1 seed density on the contour line could, therefore,   considerably prevent soil and water losses in the rainfed lands.

B. Farid Giglou, R. Ghazavi,
Volume 22, Issue 3 (11-2018)
Abstract

In this research, a regression model was introduced to study the mechanisms of the formation of gullies in the Quri Chay watershed, northern Ardebil province (Moghan Plain); this was done through investigating the effective factors of geo-environment and soil characteristics on the gully erosion. For this purpose, 17 gullies were randomly assigned through field surveys. Mapping and recording the morphometric of the selected gullies were performed by GPS positioning after seven rainfall events. The catchment-upper area of each gully was determined and its related physical parameters were calculated in order to investigate the effect of the physical characteristics of the catchment. Soil sampling was also done at the head of each gully at two different depths (30-30 and 60-30 cm) in order to determine the physical and chemical characteristics of the soil. According to measurement of the morphometric characteristics of the gully and soil characteristics through multivariate analysis of the data, a suitable regression model was developed for the longitudinal development of erosion after determining and calculating environmental factors related to the upper catchment of the gullies. The results of the correlation matrix between the longitudinal extension of the gully and the factors investigated indicated that the factors related to the physical characteristics of the beside watershed (area, perimeter, main stream length and average width of the catchment, main stream slope), gully morphometric characteristics (mean of gully cross section, the gully expansion area, and the gully average width) and soil characteristics (geometric mean of the aggregates diameter, lime, organic matter percentage) affected  the formation and expansion of gully erosion in the Quri chay catchment. The results of regression analysis showed that the longitudinal expansion of the gully was mostly influenced by the area around each gully and the percentage of organic matter, which resulted in pressure on the rangeland and the loss of vegetation, which increased runoff and accelerated the lengthwise expansion of the gully. Also, the  increase in the area of the beside catchment the gullies is known as one of the factors influencing the length of the gully, due to the high volume of runoff entering the head cut section; so it is necessary to manage  runoff in the gully with the large beside catchment.

A. Cheraghi Tabar, E. Adhami, H. R. Owliaie,
Volume 22, Issue 4 (12-2018)
Abstract

The present study was conducted to evaluate zinc availability and forms, as well as their relationships with soil properties in some soil samples of Kermanshah and Ilam provinces. Sequential extraction included Mg(NO3)2 (soluble + exchangeable), NaOAc pH = 5 (carbonatic fraction), Na-hypochlorite at pH = 8.5 (organic fraction), hydroxylamine hydrochloride at pH 2 (Mn oxides associated Zn), hydroxylamine hydrochloride (amorphous Fe oxides associated Zn), ammonium oxalate (crystalline Fe oxides associated Zn), and HNO3 (the residual Zn). DTPA-Zn was in the range of 0.34-3.7 mg/kg. The results showed that soluble+ exchangeable, Mn oxides and crystalline Fe oxides associated Zn were not detectable by atomic absorption. Distribution of Zn fractions was in the order of Organic-Zn < Car-Zn < amorphous Fe oxides-Zn < Res-Zn. Organic matter bound Zn and amorphous Fe oxides associated Zn and the residual fractions showed a significant negative correlation with the calcium carbonate equivalent. It seemed s that calcium carbonates were the major factor in controlling the Zn content in the studied soils.

M. H. Rasouli-Sadaghiani, H. Karimi, S. Ashrafi Saeidlou, H. Khodaverdiloo,
Volume 22, Issue 4 (12-2018)
Abstract

Because of the undesirable effects of lead on soil properties and human health, evaluation of its remediation methods seems to be essential. In order to evaluate the effect of humic acid (HA) on the  decontamination of lead (Pb) spiked-soils in the presence of wormwood plant (Artemicia absantium), an experiment was carried out in a completely randomized  block design with three replications. Experiment factors including different concentrations of Pb (Pb(NO3)2 in the  solid form) (0, 250, 500 and 1000 mg kg-1) and levels of HA (0, 100 and 200 mg kg-1) were considered. At the end of the growing period of plants, some soil and plant properties were measured. According to the results, BR, MBC, root and shoot dry weights, RWC and Fe and Zn concentrations in the shoot were decreased by increasing the soil Pb concentration. So, the mean values of BR and MBC in Pb1000 treatment was 60 and 51.1 percent lower than those of Pb0, respectively. Pb accumulation in the root and shoot was enhanced as a result of the increase in the soil Pb concentration. The maximum Pb concentration of shoot (37.10 mg kg-1) and root (38.1 mg kg-1) was seen in the Pb1000 treatment. Also, the results suggested that humic acid had a positive effect on the shoot of Fe, Zn and Pb concentrations. So, the concentration of these elements in HA200 treatment showed an increase 1.25, 1.64 and 1.66 times more than that of HA0, respectively. Leaf proline amount was increased significantly by elevating the soil Pb concentration; however, application of 200 mg kg-1 humic acid decreased leaf proline by 54.5 percent, as compared to the control (HA0). Therefore, humic acid effect on increasing the plant Pb uptake, improving soil biological properties, and increasing availability and dissolution of Pb showed its ability in promoting the phytoremediation efficiency. According to the obtained results of this study, woodwarm plant (Artemicia absantium) is a non-accumulator that could not be used for phytoremediation purposes.

M. R. Mirzaei, S. Ruy,
Volume 22, Issue 4 (12-2018)
Abstract

Preferential flow is of great importance in the environment and the human health. So, rapid water transportation and consequently, pollutants and pesticides leak out and get into the groundwater, making it very difficult to measure and quantify. To quantify and describe the preferential flow, two gravity-driven models were used: 1) kinematic wave model (KW) introduced by Germann in 1985), and 2) kinematic dispersive wave (KDW) model developed by applying a second-order correction to the Germann’s model by Di Pietro et al. in 2003. So, the experimental data was obtained using the laboratory mini-rainfall-simulator over cylindrical soil samples at the laboratory. Their parameters were obtained using Solver add-ins in the Excel software. Then, the results were compared using the root-mean-square error (RMSE). The results showed that the KDW model could better predict the preferential flow (with lower RMSE). Also, the regression results showed 1) there was no significant relation between the preferential flow and the total porosity, and 2) there is a significant relation between the preferential flow and the macrospores.

M. R. Rigi,
Volume 22, Issue 4 (12-2018)
Abstract

The effects of dissolved organic matter (DOM), derived from compost, on the sorption of simazine by soils were studied using a batch equilibrium technique. Six soils with different organic carbon contents were investigated in this study. Simazine sorption isotherms on soils were described by the linear equation, and the distribution coefficients without DOM (Kd) or with DOM (Kd*) were obtained. Generally, the values of Kd*/Kd were initially increased and then decreased with raising DOM concentrations of 0-65 mg DOC·L in the soil-solution system form. Critical concentrations of DOM (DOMnp) were obtained, and the value of Kd* was equal to Kd. The presence of DOM with concentrations lower than DOMnp promoted simazine sorption on the soils (Kd* > Kd), whereas the presence of DOM with concentrations higher than DOMnp tended to inhibit the simazine sorption (Kd* < Kd). Interestingly, DOMnp for the tested soils was negatively correlated to the soil organic carbon content, and the maximum of Kd*/Kd (Kmax) was correlated positively with the maximum of DOM sorption on the soil (Xmax). Further investigations also showed that the presence of the hydrophobic fraction of DOM evidently promoted the simazine sorption on soils, whereas the presence of hydrophilic DOM fraction obviously tended to inhibit the simazine sorption.

M. Kazemi, H. Karimzadeh, M. Tarkesh Esfahani, H. Bashari,
Volume 22, Issue 4 (12-2018)
Abstract

Evaluating the possible relationships between vegetation and environmental characteristics can assist managers to identify effective factors influencing plants establishment and to characterize various vegetation communities. This study was aimed to evaluate the effects of long term grazing exclusion ( more than 33 years) and the controlled grazing system (resting – rotation grazing system) on the vegetation distribution and some soil properties in the Hamzavi research station in Hanna area-Semirom, Isfahan. Six transects (three parallel transects and three transects perpendicular to the general slope of the area) were established in each area and 10 square plots with the size of 2m2 were placed along each transect; then, the cover percentage, production and list of all plant species were recorded. In each area, eighteen plots were collected randomly and in each plot, five soil samples were collected from 0-30 cm of the soil and then the samples were mixed and one sample of the compound was selected as an evidence plot. Soil properties such as pH, EC, CaCO3, organic carbon, absorbable phosphor, total nitrogen, K, Ca, Mg, soil saturated percentage, cation exchange capacity, soil clay, silt, sand and fine sand contents were measured in the soil laboratory. The independent t test was used to compare the vegetation characteristics in two areas. Cation exchange capacity, CaCO3, gravel percentage, soil phosphor content and grazing management were identified as the most discriminative factors in separating vegetation communities based on Canonical correspondence analysis (CCA) and cluster analysis. Controlled grazing management significantly modified some soil characteristics and increased the production (352 versus 184.2 kg/ha) and vegetation cover percentage (25.46 versus 18.37), as compared to the exclusion area (α= 5%). The vegetation density was increased significantly in the exclusion rather than controlled grazing area (3.03 versus 2.02 plant/m2). This study, therefore, revealed that controlled grazing management was more effective on improving some soil quality and vegetation characteristics rather than p long term grazing exclusion in the semi-arid ecosystems. So, avoiding long term grazing exclusion in semi-arid rangelands is suggested.

F. Salmasi, H. Hakimi Khansar, B. Norani,
Volume 22, Issue 4 (12-2018)
Abstract

Modeling of Kaboodval Dam using Plaxis software has been used for the Mouher-Columb behavior model. The effect of two continuities of embankment and watering operations on the meeting was considered. The body structure of the dam was increased from the side of the faces to the middle sections, and the maximum seating was recorded at 25-25 and at about 2200 mm. By examining at different intervals, the largest meeting was in the range of 180 to 185. That is, the level of the embankment was found to be critical in these numbers. Most concerns were regarding the middle of the dam, which had a weaker position. According to the analysis of different parts of Kaboudvall Dam, the materials forming the right wing of the dam in the middle and left wings of the dam were better. In the case of the 19th Module, besides the Mouher-Columb model, the dam could be modeled with hardening and hardening models. Here, the hardening model created a better fit. The hardening model, as it could get more data from the soil, is likely to better model the behavior of the soil dams. Due to the fact that, during the construction, the first sessions usually occur, the hardening model can have a better performance.

H. Ghamarnia, F. Sasani, B. Yargholi,
Volume 23, Issue 1 (6-2019)
Abstract

Exploring the homogenous regions for site specific management is important, especially in the areas under different anthropogenic activities. This was investigated using multi-way analysis including Factor Analysis, Hierarchical Clustering Analysis and k means in the areas under long-term wastewater irrigation over a period of more than 40 years, in Shahre Rey, south of Tehran. By using Factor Analysis model, eight factors as eight geochemical groups were extracted to explain approximately 60% of the total variance related to 37 soil physicochemical properties. The most important groups included the nutrient elements (OM, OC and N), micronutrients (Mn and B), soil water adsorption capacity (Clay, Silt, Sand and CEC), salinity and osmotic pressure (EC, OP and TDS) and sodification (SAR and Na). The maximum values of Cophenet and Silhouette coefficients were equal to 0.77 and 0.83, respectively, dictating the selection of the average linkage approach in Hierarchical Clustering Analysis and three clusters in the k-average method with 19, 24 and 34 mapping units. The Thiessen Polygons method in GIS was applied to separate the geochemical groups in the form of mapping units. This output, which was, in fact, the combination of multi-way models and its visual representation in GIS under separated mapping units of study area, could present suitable management activities for the areas under each cluster.


Page 17 from 22     

© 2025 CC BY-NC 4.0 | Journal of Water and Soil Science

Designed & Developed by: Yektaweb