Search published articles


Showing 32 results for Climate Change

S. M. Sajjadi, H. R. Safavi, O. B. Haddad,
Volume 22, Issue 3 (11-2018)
Abstract

In this study, the WEAP model was used for the simulation and the Gravitational Search Algorithm (GSA) was applied as the optimization model. Due to the necessity of multiple simulations in the optimization process to achieve the optimal solution, the linkage of simulation and optimization models was done in the MATLAB software environment. To evaluate the performance, hedging policies achieved in the base period were investigated for the near future period under climate change. The results showed the poor state of aquifers under the baseline scenario; also, the continuation of the current management caused the Zayandehrood river basin to experience significant problems. So management of water resources using conjunctive hedging policies could improve the situation. The use of conjunctive hedging rules showed 11 percent increase in the group sustainability index for demands, in comparison with the baseline scenario. Also, according to the group sustainability index for the resources, applying the conjunctive hedging policies could increase the sustainability of surface water and groundwater resources as much as 5.2 and 6 percent, respectively, relative to the baseline scenario. The results also indicated the better performance of conjunctive hedging policies in comparison to the baseline scenario policies.

S. Nikkhoo Amiri, M. Khoshravesh, R. Norooz Valashedi,
Volume 23, Issue 4 (12-2019)
Abstract

Today, the rising surface temperature of the planet and its effects on the water cycle have attracted the attention of many researchers. The aim of this study was to investigate the effect of climate change on the Tajan (the upstream of Shahid Rajaei dam) catchment area. In order to study the output of CanESM2 model, the SDSM method was used to estimate the magnitude of the data. Flow discharge changes in Shahid Rajaei Dam were simulated using the weather data of Kiasar synoptic station and the temperature and precipitation changes were simulated using the climate scenarios of RCP2.6 and RCP8.5 for the 2016-2066 period. Also, the effect of different scenarios on the outflow of the Soleiman Tangeh hydrometric station was evaluated by SWAT hydrologic model. The results showed that the annual precipitation would be decreased by 58% and the air temperature would be increased by 14% under RCP2.6 scenario. Also, in the RCP8.5 scenario, precipitation would be decreased by 59.5% and the temperature would be increased by 21%. Peak discharge for RCP2.6 and RCP8.5 scenarios would be increased by 4% and 5.7%, respectively, and the average annual discharge might be decreased by 16% and 16.5% in the future period (2016-2066). Therefore, it can be planned by the investigation of conditions for cropping patterns in the downstream to consider the environmental impacts for future periods.

A. Alinezhad, A. Gohari, S. Eslamian, Z. Saberi,
Volume 23, Issue 4 (12-2019)
Abstract

The evaluation of climate change impact on hydrological cycle includes uncertainty. This study aimed to evaluate the uncertainty of climate change impact on the Zayandeh-Rud Reservoir inflow during the future period of 2020-2049. The outputs of 22 GCM models were used under the three emission scenarios including RCP2.6, RCP4.5 and RCP8.5. The Bayesian Model Averaging (BMA) was used as the uncertainty analysis for weighting the 22 GCM models based on their ability to simulate the baseline 1990-2005 period. Results showed that different GCM models had different abilities in estimating climatic and hydrological variables and the application of uncertainty analysis in climate change studies could be necessary. The monthly temperature in the upstream of Zayandeh-Rud reservoir could be raised by 0.85 to 1 ◦C; also, the precipitation might be increased by 2 to 3 percent. The high flow during winter season will increase under climate change, while the spring and autumn seasons’ low flows are expected to reduce. Additionally, the annual reservoir inflow may decrease by 1 to 8 percent, showing the necessity for change in Zayandeh-Rud reservoir’s rule curve and allocation of water resources.

S. Janatrostami, H. Mahmoudpour,
Volume 23, Issue 4 (2-2020)
Abstract

One of the main sources of greenhouse gas (GHG) emissions is the use of energy for groundwater pumping. Reducing energy consumption is very important to achieve the environmental sustainability and decrease the climate change impacts. In this paper, the amount of greenhouse gas emissions from groundwater pumping in the Guilan’s aquifers was investigated. Firstly, groundwater depletion and the types of pumps for water pumping were examined in the current condition; then, the values of consumed energy, GHG emissions and climate change indicator of the current condition were estimated. The primary investigations showed that 55 percent of wells in the studied region had a diesel engine pump, while 51.3 percent of the required energy for groundwater pumping was supplied by electric pump. Calculated total GHG emissions and the value of climate change indicator in the current condition were equal to 8.98 and 7.59 Milion kg CO2 eq , respectively. In order to achieve environmental sustainability and energy security, scenarios of replacing electric pumps and applying solar energy were examined. The results of the scenarios showed that diesel fuel wells had no significant effect on the reduction of greenhouse gas emissions, but the use of solar energy reduced them. GHG emissions, in comparison with the base scenarios, were decreased by 44.4% in June, July and August, respectively, by applying the scenario of using the solar pump in agricultural section. Therefore, it is preferred to apply policies in future planning to use renewable energies such as solar energy instead of diesel and electricity energy.

Z. Ebrahimikhusfi,
Volume 24, Issue 1 (5-2020)
Abstract

The purpose of this study was to analyze the temporal variations of dust phenomenon and its relationship with the climatic elements in Yazd city, located near one of the critical centers of dust production in the center of Iran. For this purpose, the Dust Storm Index was first calculated. After the standardization of precipitation, temperature, maximum wind speed, average wind speed, relative humidity and, dust storm index, the co-linearity effect between variables was calculated by using inflation variance factor. Then, several regression models were prepared based on the optimal Ridge parameter. The performance of the models was evaluated based on the determination coefficient, F value and Root Mean Square Error. Finally, by using the most accurate model, the impact of climate parameters on the dust events changes was determined. The results showed that the incidence of dust events in the spring was more than the rest of the year. Based on the optimal model (Model 12), it was found that the main factor influencing the dust storm index variations in different seasons was the surface winds speed. It was also shown that 39%, 25%, 46% and 31% of dust storm index changes in winter, spring, summer, and autumn were due to the interaction of the five climatic parameters studied in this study.

S. Zandifar, Z. Ebrahimikhusfi, M. Khosroshahi, M. Naeimi,
Volume 24, Issue 3 (11-2020)
Abstract

The occurrence of wind erosion and the spread of dust particles can be regarded as one of the most important and threatening environmental factors. Climate change and the frequency of droughts have played an important role in exacerbating or weakening these events. The primary objective of the present study was to investigate the trend of changes in four important climatic elements (precipitation, temperature, wind speed and relative humidity) and dust storm index (DSI) in Qazvin city using the Mann-Kendall pre-whitened test and to determine the relationship between them based on the multiple linear regression method. Assessment of the meteorological drought status based on two standardized precipitation index and standardized precipitation, as well as the evapotranspiration index and analysis of their effect on activity level of dust events, was the other objective of this study in the study area. For this purpose, after preparing and processing the climatic data and calculating the dust storm index, the trend of changes and the relationship between climatic parameters and dust events were investigated. The results showed that the changes of trend in the annual precipitation and relative humidity in Qazvin city were increasing, while the trend of annual changes in the wind speed and the mean air temperature was a decreasing one. Investigation of the monthly changes in the dust events also showed that there was a sharp decrease in the occurrence of wind erosion and the spread of domestic dust particles only in July. On a seasonal scale, with the exception of winter that has been reported without trends, in other seasons, the intensity of these events was significantly reduced. The effect of the meteorological drought on wind erosion was estimated to be 11% at the confidence level of 99%. In general, these findings indicate a decreasing trend of land degradation and desertification caused by wind erosion in Qazvin.

H. Fathizad, M. Tavakoli, M. A. Hakimzadeh Ardakani, R. Taghizadehmehrjardi, H. Sodaiezadeh,
Volume 24, Issue 4 (2-2021)
Abstract

The purpose of this research was to investigate the trend of annual changes in Yazd station's meteorological parameters including minimum and maximum average daily temperature and average daily precipitation (1961-2005), as well as the predicted annual mean of these parameters in the three upcoming thirty years of the 2040s, 2070s and 2100s, by the SDSM model, under RCP2.6, RCP4.5, RCP8.5, A2, and B2 scenarios. Accordingly, by using the coefficient of determination and the MAE, R2, RMSE indicators, we evaluated the data generated by the SDSM model in comparison with the observed data in the base period. The lowest value of R2 based on the calibration and validation of the mean values of observed and simulated SRES was obtained for precipitation (86 and 80%). In terms of the R2 evaluation index, the accuracy of the small-scaled results of the minimum and maximum average temperature values was more than that of the average precipitation; however, in terms of the MAE and RMSE evaluation indicators, the accuracy of the small-scaled results of the average precipitation was higher than that of the minimum and maximum average temperature values. Subsequently, HadCM3 large-scale climatological data was used to predict the future periods (2010-2100). The results indicated that the temperature was raised in all months and seasons and the precipitation was decreasing in most of them, thereby confirming that the climate was changing in the studied region.
 

S. Moghim, J. Rahmani,
Volume 25, Issue 1 (5-2021)
Abstract

Improper water managements and overuse of surface water and groundwater mainly for agricultural purposes in Iran have led to the drying of many rivers and groundwater. Climate change adds an extra pressure on the water resources. These changes indicate the necessity of adjustment in water management plans. This study used hydroclimatic variables including precipitation and temperature in Urmia Plain to find appropriate crops that needed the minimum irrigation water. In addition, the best time for planting each crop is determined. To find the proper crops for the region, the daily water, as required for each crop, was calculated based on climate condition, crop type, and crop growth stage. The results indicates that grape could be the best crop for the region. In addition, early planting (e.g. in spring) reduced the irrigation water needed due to more rain and soil moisture in spring than summer, which could provide crop water requirement. On the other hand, the increased temperature in spring could satisfy heat units required for the fully grown plants like barley.  

S. Banihashemi , S. S. Eslamian, B. Nazari,
Volume 25, Issue 2 (9-2021)
Abstract

The upcoming climate change has become a serious concern for the human society. These changes, caused and aggravated by the industrial activities of the international community and the increase in the concentration of greenhouse gases in the atmosphere, are seen as a threat to the food security and environment. Temperature change and precipitation are studied in the form of different probabilistic scenarios in order to have an outlook for the future. The present study was conducted to address the effects of climate changes on temperature and precipitation in Qazvin plain in the form of five AOGCMs including Hadcm3, CSIRO-MK3, GFDL, CGCM3 and MICROC3.2, and 3 greenhouse gas emission scenarios of A1B, A2 and B1, based on different possible scenario combinations in the next 30 years, 2021-2050 and 2051-2080 (near and far future). On basis of the study results, all 4 target stations, on average, will have experienced a change between two ratios of 0.5 and 1.4 of  the observed precipitation period  by the end of 2050, and the mean temperature will have had a change  between -0.1 to 1.6 °C, relative to the observed period.  By the end of 2080,  the  precipitation will also have fluctuated between the two proportions of 0.5 and 1.7 times of the observed precipitation period and the mean temperature will touch an increase between 0.6 and 2.6 °C. Both SPI and SPEI indices suggest the increment in the number of dry periods in the near and far future. However, the total number of negative sequences differed considering the 3, 12 and 24-month intervals at the stations level. Given the SPEI index, as compared to the base period, the total negative sequences of drought and number of dry periods will increase at 3 stations of Avaj, Bagh-Kowsar and Shahid-rajaei-powerhouse and decrease at Qazvin station in the future; however, SPI gives different results, such that  for Bagh-Kowsar, there will be an increase in both total negative sequences of drought and number of dry periods, as  compared to the baseline period; three other stations will have more dry periods, specifically, but less total negative sequences. The results reported that the drought events would become severe, and the wet events would become extreme in the future.

M. Motamedi, H. R. Eshghizadeh, A. Nematpour, A. Gohari, B. Safa,
Volume 25, Issue 2 (9-2021)
Abstract

World climate change is an accepted important subject but its negative effects are severe in arid and semi-arid areas of Iran. So, in the present study, two climate scenarios including RCP 8.5 (critical scenario) and RCP 4.5 (moderate scenario) during 2020, 2030, and 2040 decades and their effects on temperature changes in the wheat growth period in five cities of Isfahan province including Isfahan, Najaf Abad, Chadegan, Burkhar, and Meimeh have been investigated. The survey of temperature changes during wheat growth in the next decades showed that Burkhar, Isfahan, Najaf Abad, Chadegan, and Meimeh, respectively will experience more days with a temperature higher than 30°C in 2020, 2030, and 2040 decades than the mean of two recent years (2017-2018). Furthermore, in comparison with present conditions, the most changes in the number of days with a temperature higher than 30°C in next decades climates (2020, 2030, and 2040 decades) will be in Burkhar, Meimeh, Chadegan, Najaf Abad, and Isfahan, respectively. The range of changes percent in the number of days higher than 30°C in next climate conditions rather than present condition will be varied between 5 percent (Isfahan) till 97 percent (Burkhar). The changes percent in all studied cities were more in RCP 8.5 than RCP 4.5. During wheat growth, the number of days less than zero°C will be less in Isfahan, Burkhar, and Meimeh while will be more in Najaf Abad and Chadegan. The evaporation- transpiration will be increased in the next decades during wheat growth. As a result, planning and using compatibility strategies for each city is important to guarantee wheat production.

Prof. J. Abedi-Koupai, S. Rahimi, S. Eslamian,
Volume 25, Issue 3 (12-2021)
Abstract

Changing the date of the first fall frost and the last spring frost is an important phenomenon in agriculture that can be one of the consequences of global warming. Using general circulation models (GCMs) is a way to study future climate. In this study, observations of temperature and precipitation were weighted by using Mean Observed Temperature-Precipitation (MOTP) method. This method considers the ability of each model in simulating the difference between the mean simulated temperature and mean precipitation in each month in the baseline period and the corresponding observed values. The model that had more weight, selected as the optimum model because it is expected that the model will be valid for the future. But, these models are not indicative of stationary climate change due to their low spatial resolution. Therefore, in this research, the outputs of GCM models are based on the three emission scenarios A2 and B1 and A1B, downscaled by LARS-WG for Isfahan station. The data were analyzed by SPSS software at a 95% confidence level (P<0.05). The results indicated that in the Isfahan in the future period 2020-2049 based on the three scenarios, as compared with baseline period 1971-2000, the first fall frost will occur later and the last spring frost will occur earlier. The first fall frost will occur later for 2 days (based on the A1B emission scenario) to 5 days (based on the A2 emission scenario) and the last spring frost will occur earlier for 2 days (based on the and B1 emission scenario) to 4 days (based on the A2 emission scenario). Finally, the best distribution functions for the first fall frost and the last spring frost for the baseline period and under climate change were selected and compared using the EasyFit software.


H. Noori Khaje Balagh, F. Mousavi,
Volume 25, Issue 3 (12-2021)
Abstract

In the present study, CanESM2 climate change model and stormwater management model (SWMM) were employed to investigate the climate change effects on the quantity and quality of urban runoff in a part of Karaj watershed, Alborz Province. The base period (1985-2005) and future period (2020-2040) are considered for this purpose. Based on the existing main and lateral drainage system and to be more accurate, the watershed was divided into 37 sub-watersheds by ArcGIS software. To simulate rainfall-runoff, the intensity-duration-frequency (IDF) curve has been prepared for a 2-hour duration and 10-year return period, for the base period and RCP2.6 and RCP8.5 climate change scenarios based on the obtained precipitation data from Karaj synoptic station. Results showed that mean 24-hour precipitation values in RCP2.6 and RCP8.5 scenarios will increase by 21% and 11%, respectively, and maximum 24-hour precipitation values will decrease by 17% and 23%, respectively, as compared to the observed values in the base period. Also, based on the results of quantitative and qualitative runoff modeling in the study watershed, and according to the outflow hydrograph in the RCP2.6 and RCP8.5 scenarios, the outlet runoff discharge will decrease by 5.8% and 7.1%, respectively. Also, the flooded areas in the watershed will decrease by 13% and 15.28%, respectively. The concentration of pollutants in the RCP2.6 and RCP8.5 scenarios, compared to the base period, including total suspended solids (TSS), will increase by 7.48% and 9.24%, total nitrogen (TN) will increase by 6.93% and 8.48%, and lead (Pb) will increase by 7.32% and 8.91%, respectively.

M. Zareian,
Volume 26, Issue 2 (9-2022)
Abstract

This study was conducted to investigate the effects of climate change on temperature and precipitation changes in important synoptic weather stations in Yazd province (including Yazd, Bafgh, Marvast, and Robat-e-Poshtebadam). Accordingly, a combination of the outputs of the latest AOGCM models presented in the IPCC sixth assessment report (CMIP6) were used to increase the accuracy of temperature and precipitation forecasts. A weighting method was used based on the Kling-Gupta combined index (KGE) to combine these models. After weighting the models, the monthly temperature and precipitation changes were calculated based on SSP126, SSP245, and SSP585 emission scenarios. Then, daily temperature and precipitation time series were extracted for different weather stations using the LARS-WG downscaling model. The results showed that in all the weather stations, CanESM5 and BCC-CSM2-MR models have the best ability to simulate the temperature and precipitation of the historical period, respectively. Results also showed that in all emission scenarios, the annual temperature will increase and the annual precipitation will decrease. The annual temperature of this region will increase between 0.2 to 0.6 °C, and the annual precipitation will decrease between 2.9 and 13.7% in different weather stations. Also, the maximum temperature increase and precipitation decrease in this region, will occur in spring and autumn, respectively.

F. Fathian, M. Ghadami, Z. Dehghan,
Volume 26, Issue 4 (3-2023)
Abstract

In this research, the trend of spatial changes in extreme indices of temperature related to the health and agriculture sectors such as the number of frost days, number of summer days, number of icing days, number of tropical nights, growing season length, diurnal temperature range, cold spell duration index, and warm spell duration index were investigated for 54 synoptic stations throughout Iran for observational (1976-2005) and future (2025-2054) periods. Daily maximum and minimum temperature data of three regional climate models namely, CCSM4, MPI-ESM-MR, and NORESM1-ME from the CORDEX project under RCP4.5 and RCP8.5 scenarios were downscaled for each station using a developed multiscale bias correction method. Then, trends and changes of extreme temperature indices were investigated using Mann-Kendall and Sen’s trend line slope methods. The results indicated that the warm indices such as the number of summer days and tropical nights indices have had a positive trend at most stations in both observational and future periods. In contrast, cold indices like the number of frost days have had a decreasing trend in most stations. The results of cold and warm spell duration indices showed that most stations have had no trend for both periods. The growing season length has increased in more than 60% of stations (45% having a significant trend) mainly located in the northern, northwestern, and western regions of the country. Based on the results, it can be concluded that without considering thoughtful climate adaptation measures, some parts of the country may face health risks and limited habitability and agriculture in the future.

T. Mohammadi, V. Sheikh, A. Zare,
Volume 26, Issue 4 (3-2023)
Abstract

Trend analysis of stream flow provides practical information for better management of water resources on the eve of climate change. Therefore, the present study investigated river flow variations during three decades as well as projections of future discharge in the Gorganrood watershed. The Man-Kendall method has been used to detect the trend and methods of Pettitt, SNHT, and Buishand to identify points of a sudden change in discharge time series in 8 stations of Aq Qala, Galikesh, Gonbad, Haji Ghoshan, Nodeh, Ramyan, Sadgorgan, and Tamar. The Mann-Kendall trend test showed the existence of a significant negative trend (flow reduction) on a daily and annual scale in all stations. Monthly, the strongest negative trend in Aq Qala, Galikesh, Gonbad, Haji Ghoshan, and Ramyan stations was related to July, but in Nodeh and Tamar stations, it was related to August and February, respectively. A decreasing trend was observed in all stations on a seasonal scale, but this trend was not significant in some seasons. The results of the analysis of change points in discharge showed that the change points in the data used in this study are more of a decreasing and in some cases incremental type and some stations, no change points have been identified at all. Therefore, the number of decreasing changes in the studied hydrometric stations is significantly higher than the incremental changes and is more visible from 1993 to 1997 and 2005-2007 in three and four stations, respectively. Also, the most incremental changes among the stations are related to the Aq Qala station in 2017 with a flow rate of 234 cubic meters per second. Investigation of the flow of the basin in the past decades showed significant monotonic and abrupt changes which are mostly toward decreasing the basin’s discharge. The downward trend in discharge values at different time scales for all hydrometric stations of the Gorganrood watershed, which will be more severe in the future due to global climate change, and increasing the region's water needs for various future use due to population growth and the expansion of industries can also be considered as a serious warning for policymakers, planners, and local managers to prevent a possible water crisis in the region in the future with proper planning.

M. Paritaghinezhad, H.r. Kamali, S. Jamshidi, M. Abdolahipour,
Volume 27, Issue 2 (9-2023)
Abstract

According to the effects of climate change on evapotranspiration and using of water resources, climate change prediction is vital due to water resources management improvement and decreasing damages of drought. The first rank of mango production in Iran belonged to Hormozgan province and the most amount of mango produced in Minab plain. In the present study, the amount of evapotranspiration of mango plants was calculated with FAO Penman-Monteith from 1985 to 2020 using meteorological data at Minab station. The evapotranspiration values of the plant were estimated from 2021 to 2100 with two optimistic and pessimistic scenarios using the last version of CMIP (CMIP6), atmospheric-ocean general circulation models, and performing statistical deviation corrections by the Python software. The results showed that the values of annual evapotranspiration will increase by 0.31 and 1.23 mm on average in the optimistic and pessimistic scenario, respectively in the future due to the increase in annual temperature.

E. Taheri, F. Mousavi, H. Karami,
Volume 27, Issue 2 (9-2023)
Abstract

One of the basic steps in water resources management and planning according to population increase and lack of water resources in Iran is to optimize the use of dam reservoirs. In this research, the effect of meteorological droughts on the optimization of the Aydoghmoush dam reservoir in the northwest of Iran was evaluated by applying metaheuristic algorithms under the impact of future climate change. Three models and two scenarios of SSP2-4.5 and SSP2-8.5 of the sixth IPCC report, and the LARS-WG downscaling model were used for Aydoghmoush dam weather station for the base period (1978-2014) and future periods of 2022-2040 and 2070-2100. The inflow and outflow of the dam, as well as the optimal utilization of the dam reservoir, were evaluated using standalone, and hybrid mode of genetic, slime mold, and ant colony algorithms. Results of the best release scenario (SSP2-8.5) showed that the annual rainfall in the future periods will decrease by 8.9 mm, and 14.5 mm, respectively, compared to the base period. The objective function of optimizing the use of the dam reservoir was defined as minimizing the sum of squared relative deficiencies in each month and maximizing the reliability in the statistical period of 2011-2021. The results showed that in terms of time reliability, vulnerability, and stability, the hybrid slime mold-genetic algorithm was better than other algorithms with values of 0.73, 0.32, and 28.78. Prediction of the dam's inflow and outflow using the hybrid slime mold-genetic algorithm indicated high accuracy compared to other models by 13% and 19% errors, respectively.

A. Mahdavi, S. Soltani Koopaei, R. Modares, M. Samiei,
Volume 27, Issue 4 (12-2023)
Abstract

Land use changes are one of the main factors in the amount of surface runoff changes in watersheds. Therefore, it is necessary to investigate it to reduce the damages (human and financial) caused by floods and to modify watershed management. The watershed of Nahre Azam is located in the north of Shiraz city and a lot of loss of life and money to the residents of Shiraz due to floods has occurred in previous years. The present research was conducted to investigate the relationship between land use change and runoff in the Nahre Azam watershed in Shiraz using the SWAT model in the period of 2004-2020. The model was calibrated using data from 2004 to 2014 and validated for 2015 to 2020. These images were classified into 6 main land uses using the supervised classification method after performing necessary pre-processing, and a land use map was prepared for 2040 using the Markov chain method. Then, the effect of the land use change in 2003 and 2040 on the amount of simulated runoff was evaluated with the recalibrated model. The calibration results of Nahre Azam watershed for the values of statistical parameters in the calibration step for the coefficient of determination, P-Facor and R-Facor are 0.77, 0.72, and 2.43, respectively, and for the validation step we obtained 0.69, 0.65, and 2.3 respectively. The analysis of the land use map showed that the main land use change in the region related to the conversion of pastures to agricultural land and urban land, which caused a decrease in pastures. Also, the results of the model simulation using the land use maps of 2003 and 2040 indicated that the amount of runoff decreased. The results revealed that if all the uncertainties are minimized, the calibrated SWAT model can produce acceptable hydrological simulation results for the user, which is useful for water resource and environmental managers and politicians as well as city managers of Shiraz.

M. Naderi, V. Sheikh, A. Bahrehmand, C.b. Komaki, A. Ghangermeh,
Volume 27, Issue 4 (12-2023)
Abstract

Greenhouse gases and the occurrence of climate change have occurred with the development of technology and the industrialization of human societies. long-term forecasting of climate parameters has always been interesting due to the importance of climate change for the earth and its inhabitants. General Circulation Models (GCMs) are one of the most widely used methods for evaluating future climate conditions. In the present study, the results of three general circulation models including the American model of GFDL-CM3, the Canadian model of CanESM2, and the Russian model of inmcm4ncml for the study area were evaluated and the CanESM2 model was selected as the superior model. The RCP scenarios 2.6, 4.5, and RCP 8.5 were used with the CanESM2 model to assess climate change conditions across the Hablehroud River basin for the period 2020-2051. According to the results, the total monthly precipitation shows an increasing trend in the coming decades 2020-2051 period compared to the period 1986-2017. The results of the study of temperature changes in the period 2020-2051 in the Hablehroud River basin also indicate an increase in the monthly average of maximum and minimum temperatures in the coming decades. The consequences of these conditions are of great hydrological importance in the study area, this condition necessitates the adoption of climate change adaptation policies in this watershed.

I. Kazemi Roshkhari, A. Asadi Vaighan, M. Azari,
Volume 28, Issue 1 (5-2024)
Abstract

Due to climate change and human activities, the quality and quantity of water have become the most important concern of most of the countries in the world. In addition, changes in land use and climate are known as two important and influential factors in discharge. In this research, four climate change models including
HADGEM2-ES, GISS-E-R, CSIRO-M-K-3-6-0, and CNRM-CM5.0 under two extreme scenarios RCP2.6 and RCP8.5 were used as climate change scenarios in the future period of 2020-2050. The future land use scenario (2050) was prepared using the CA-Markov algorithm in IDRISI software using land use maps in 1983 and 2020. The SWAT model was calibrated to better simulate hydrological processes from 1984 to 2012 and validated from 2013 to 2019 and was used to evaluate the separate and combined effects of climate change and land use on discharge. The prediction of the climate change impact on discharge showed a decrease in most of the models under the two scenarios RCP2.6 and RCP8.5. The average maximum decrease and increase under the RCP2.6 scenario is 60 and 30 percent, respectively. This significant reduction is greater than that predicted under the RCP8.5 scenario. Examining the combined effects of climate and land use change revealed that the average decrease in discharge in the months of October, November, December, and January under two scenarios is 46.2 and 58%, respectively. The average increase in discharge is predicted to be 47% under the RCP8.5 in the months of April and May in the HadGEM2ES.


Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb