Search published articles


Showing 4 results for محمدرضا مصدقی

M. R. Mosaddeghi, A. Hemmat, M. A. Hajabbasi,
Volume 7, Issue 1 (spring 2003)
Abstract

Soil tilth is crucial to seedling emergence, plant growth, and crop yield. Soil tilth of unstable soil is very susceptible to change. Internal forces originating from matric suction can change soil physical properties. A laboratory study was conducted on pots of a surface silty clay loam soil of Khomeinishahr series (fine-loamy, mixed, thermic Typic Haplargids, USDA), located in Research Farm of Isfahan University of Technology. Soil surface subsidence, bulk density, cone index, and tensile strength were measured after first flood irrigation. Results showed that the seedbed (0-20 cm) with a bulk density of 1.2 Mg.m-3 will be changed to a massive soil with high values of bulk density, cone index, and tensile strength after soil wetting. Slaking, slumping and coalescence of the soil caused soil surface to subside about 1.5 cm in 20 cm soil layer. After irrigation, cone index and tensile strength increased abruptly with decreasing of moisture content. It is shown that the dominant source of strength (cone index and tensile strength) gain during drying is the effective stress due to matric suction. In the absence of external loads, physical state (tilth) of the soil returned back to the original state. Therefore, soil slaking and slumping and rearrangement of particles along with the internal forces are the factors leading to soil hardness.
A. Safadoust, M. R. Mosaddeghi, A. A. Mahboubi, A. Nouroozi, Gh. Asadian,
Volume 11, Issue 41 (fall 2007)
Abstract

The increased potential for soil erosion and compaction due to continuous row crop production and intensive tillage is causing some concern and has led to the consideration of reduced tillage techniques as part of the solution. The objective of this study was to investigate the short-term (one-year) influences of different management practices on the physical properties of a sandy loam soil under corn crop. Treatments were the combinations of three tillage systems (no-till, NT chisel plow, CP and moldboard plow, MP) and three composted cattle manure rates [0, 30 and 60 ton (dry weight) ha-1]. The experiment was carried out in a split-plot design. Three replicates of the treatments were applied in a randomized block design. Saturated hydraulic conductivity (Ks), total porosity (TP), macro-porosity (Macro-P), micro-porosity (Micro-P) of soil and mean weight diameter (MWD) of aggregates, were measured to a depth of 22.5 cm when 100 percent of the tassels appeared. Tillage and manure combination had significant effects on Log[ Ks], TP, Macro-P and Micro-P. The MP system increased pore space and continuity due to complete inversion and loosening, and as a result Ks, TP, Macro-P and Micro-P were higher than NT system. Higher Macro-P observed for CP might have caused higher Ks versus MP. Reduced tillage systems increased MWD and the increment of manure caused an increase in MWD over all tillage treatments. The results indicate short-term positive effects of manure application on soil pore size characteristics and aggregate stability under moldboard and chisel plowings in the region.
M. B. Farhangi, M. R. Mosaddeghi, A. A. Safari Sinegani, A. A. Mahboubi,
Volume 16, Issue 59 (spring 2012)
Abstract

In agriculture, cow manures are used to enhance soil fertility and productivity. Escherichia coli is the most common fecal coliform in cow manure and considered as an index for microbial contamination of groundwater resources. The objective of this study was to investigate the transport of Escherichia coli (released from cow manure) through the field soil. Lysimeters (with internal diameter of 20.5 and height of 50 cm) were inserted into an in situ clay loam soil. Unsaturated soil water flow was controlled at an inlet matric potential of –5 cm using a tension infiltrometer. When the steady-state flow was established, air-dried fresh cow manure was applied on the lysimeters at a rate of 10 Mg ha-1 (dry basis) and the soil-manure leaching started. Soil solution was sampled at 1, 2, 4, 6, 12 and 24 h after leaching initiation using plastic samplers installed at depths of 20 and 40 cm. Concentrations of Escherichia coli in the soil solution (C) and the influent (C0) were measured using the plate count method. Impacts of soil depth, sampling time, and their interaction on C and C/C0 were significant (P<0.01). In all leaching times, relative adsorption index (SR) was lower when both soil layers were considered and the filtration increased with soil depth. When the concentration was corrected for the second layer (i.e. 20–40 cm), the SR values in this layer were considerable and greater than those in the first layer at 4 and 6 h. The influence of surface layer was substantial in bacterial filtration however, the preferential flows especially in the initial leaching times resulted in bacterial movement towards the second layer. Temperature drop reduced bacteria release from the manure, increased viscosity of the flowing water, and consequently diminished significantly the bacteria concentration in the soil solution at 24 h. Overall, it was found that similar to surface layer, subsurface layer might have great role in bacterial filtration due to its higher clay and carbonate contents
M. Khatar, M. R. Mosaddeghi, A. A. Mahboubi,
Volume 16, Issue 60 (Summer 2012)
Abstract

This study was conducted to investigate the effect of water salinity and sodicity on pore size distribution and plant-available water of two clay and sandy clay loam calcareous soils. All combinations of water EC values of 0.5, 2, 4 and 8 dS m-1 and SAR values of 1, 5, 13 and 18 (in total 16 solutions) were used to wet and dry the soil samples for five cycles. Then, water retention of the soil cores was measured at matric suctions of 0 (θs), 10 (θ10) 100 or 300 cm (θFC) and 15000 cm (θPWP). The following quantities were calculated: the difference between θ100 or θ300 and θ15000 considered as available water contrent, the θs and θ10 as macrorosity, the θ10 and θ100 as mesoporosity, and the θ100 as microrosity. The initial porosity of both soils was similar, but the greater values of pore indices and θFC, θPWP and AWC were measured in the clay soil due to clay swelling. As water EC increased, mesopores were destructed and altered to macropores and micropores. Salinity altered the mesopores into macropores due to contraction of diffuse double layer and particle’s flocculation and consequently decreased the θFC, and created new micropores which were responsible for the higher value of θPWP. These trends ultimately diminished the AWC. As water SAR increased, mesopores were destructed and altered to micropores but it did not significantly affect the macropores. With increment of SAR, both θFC and θPWP increased due to structural distruption clay swelling and dispersion resulting in increased adsorptive and interlayer surfaces. The increasing effect of SAR on θPWP was greater and more distinct so that AWC was reduced. As a result, high values of SAR of irrigation water decreased the soil available water to plants besides its toxicity and hazardous effect on plants. With increment of irrigation water salinity, the destructive impacts of SAR diminished. The influence of water quality on water retention was pronounced for the clay soil.‎

Page 1 from 1     

© 2026 CC BY-NC 4.0 | Journal of Water and Soil Science

Designed & Developed by: Yektaweb