Search published articles


Showing 24 results for Mirza

P. Namvar, M. H. Safaralizadeh, A. A. Pourmirza,
Volume 7, Issue 1 (spring 2003)
Abstract

In this study, susceptibility of the first three larval stages of Spodoptera exigua to Bacillus thuringiensis was investigated. To determine the LC50 values for each larval instar, 6 different logarithmic concentrations of Bacillus thuringiensis were used. A control was also included in each of the bioassays. The value of LC50 for 1st instar larvae, that had been treated one to four hours after hatching, was 311.617 ppm. For the 2nd and third instars, the larvae values of LC50 were 1356.95 and 2708.27 ppm, respectively. It was clear that larval susceptibility to Bacillus thuringiensis decreased with age. In order to enhance the Bacillus thuringiensis efficiency to control Spodoptera exigua under field conditions, Bacillus thuringiensis should be applied at egg hatch peaks.
A. Sheikhi Garjan, K. Talebi, A. A. Pourmirza,
Volume 8, Issue 4 (winter 2005)
Abstract

The egg parasitoids are the major natural enemies of sunn pest and application of selective insecticides is one of the strategies for conservation of natural enemies. The toxicity of five different insecticides used in cereal fields to the parasitized eggs was investigated under laboratory conditions. The insecticide solutions were made based on the recommended field rates. 3-, 5- and 8- day -old parasitized eggs were dipped into insecticide solutions. Among the treated developmental stages (except for the fenirothion), 3- and 8- day- old parasitized eggs showed the highest and the lowest emergence percentages, respectively. Deltamethrin had maximum effect on emergence percentage whereas phosalone had the least hazardous effects. There was a significant difference in parasitism percentage between 3- and 8- day- old parasitized eggs in each of the 4 treatments, viz trichlorphon, fenitrothion, deltamethrin and esfenvalerate. Adults emerging from 3- day- old eggs parasitised less eggs than those emerged from 8- day- old eggs in fenitrothion, and trichlorphon treatments. All tested insecticides were highly toxic to the adult parasitoid, causing 100% mortality when the adults were exposed to sprayed areas at recommended rates.
E. Javvi, M. H. Safar Ali Zadeh, A. A. Pourmirza,
Volume 8, Issue 4 (winter 2005)
Abstract

The effect of Bacillus thuringiensis var. kurstaki on different larval instars of Colorado potato beetle, Leptinotarsa decemlineata (Say) and the role of two plant materials, namely, caffeine and aqueous neem extract, in the enhancement of it’s efficiency was investigated under laboratory conditions. The experiments were conducted at 25±4 oC, 65±5 %(RH) and photoperiod of 16:8 (L:D).The larvae were provided from the colony established and maintained on host plant. The different larval instars were distinguished by measuring head capsule width.To evaluate susceptibility of different instar groups of larvae to B.thuringiensis, LC50 values on (1-4) instar groups were determined. LC50 values for 1st, 2nd, 3rd and 4th instar groups were, 183.86, 377.03 ,1297 and 3096 ppm, respectively. The synergistic effect of caffeine and aqueous neem extract with B.thuringiensis was investigated separately on 3rd larvae instar. A completely randomized design with 6 treatments and 4 replications was used. The results revealed that there was a striking synergistic effect of caffeine and neem on B.thuringiensis.The larval mortality percentage for mixture 618ppm of B.thuringiensis and 4000ppm of caffeine was 80% however, this was 10% and 20% for caffeine B. thuringiensis respectively when these compounds were used alone.The initiation of larval mortalitry in all mixtures was earlier than other treatments.Also the larval mortality for mixture B. thuringiensis with 35000 ppm of aqueous neem extract was 77.5% after 144 hours however, it was 22.5 % and 25 % for B.t. and neem alone, respectively. The mean weight of larvae treated with all synergists was significantly less than the control cohort, (p<0.05).
A. Ghane, M. R. Ahmadi, A. Esmaili, A. Mirzajani,
Volume 10, Issue 1 (spring 2006)
Abstract

Present study investigates macrobenthic invertebrates and their community structure in Chafrood river to classify and assess the study sites regarding the environmental anthropogenic factors. Along a 9 km distance, 8 study sites were selected, and macrobenthic were monthly sampled using a surber sampler (1600cm2, 250 μ mesh net) with 3 replicate at each station. Collected samples organisms were fixed with 4% formalin and laboratory process including sorting, identification and enumeration of the animals were preceded. During the study 73 benthic taxa were identified which were dominated with aquatic insects larvae especially orders Diptera and Ephemeroptera. The maximum and minimum total abundance was 2335 ind.m-2 in station #2 and 1639 ind.m-2 in station #4 respectively. Benthic animals' frequency data were summarized to community structure metrics including total richness, EPT richness and ratio of EPT frequency to Chironomidae family. A Shannon- Winner diversity index and Hilsenhoff family level biotic index was also determined for each studied station. Result of cluster analysis for stations, based on the community structure metrics and diversity index, was in accordance with the station classification using biotic index and both classify the affected stations at the same group.
L. Khodaei, H. Rahimian, R. Amiri, M. Mesbah, A. Mirzaei Asl, S. K. Kazemitabar,
Volume 11, Issue 1 (spring 2007)
Abstract

Genetic male sterility is controlled by one pair of ressesive allele (aa) in sugar beet. This trait is used in most breeding programes. The exsistance of the character in a line or population facilitates transfer of important trait to the breeding material (for example resistance to plant disease). Also, it is possible to increase genetic diversity of monogerm populations by using genetic male sterility. The time and cost of transferring of this gene will be decreased, if the character is tagged with a molecular marker. Bulked segregant analysis using 302 RAPD primers in two F2 populations (231 and 261 population) was performed for the the identification of RAPD markers linked to the genetic male sterility gene. DNA preparation from 8 male fertile and male sterile plants were separately mixed. At first, the primers were tested on bulks. The primers with polymorphic bands were tested on individual plants of the bulks. Only if the polymorphism of the primers was confirmed, they were tested on the other individual plants. Finally, 10 and 6 markers were identified in 231 and 261 populations, respectively, which their distances to male sterility gene were lower than 50 cM. AB-8-18-600r marker was the nearest marker to male sterility gene. This marker showed only 3 and 1 recombination in 231 and 261 populations, respectively. The distance of this marker and genetic male sterility locus was estimated as 5.3 cM in combined F2 populations.
M Mirzaee, S Ruy, Gh Ghazavi, C Bogner,
Volume 12, Issue 46 (1-2009)
Abstract

At present, soil surface characteristics (SSC) are recognised as key parameters controlling infiltration rates, runoff generation and erosion. Microtopography of surface among SSC is the main one. The work presented in this paper is based on a set of digital elevation models (DEMs) supplied by two different methods: Laser roughness-meter and photogrammetry method. We used two maquettes. The used maquettes correspond to varying roughness (rough and soft roughness). These methods were compared using different statistical parameters of SSC such as heights and slopes histograms. In addition, we studied estimation of Random Roughness (RR) coefficient and Maximum Depression Storage (MDS). RR is considered as an indicator of microtopography and it is one of the main parameters influencing erosion and runoff-infiltration processes. The obtained RR by photogrammetry method showed, on average, 10 percent difference from laser method for soft maquette and 5 percent for the rough maquette. The range of this difference for the MDS varies from 2 to 34 percent, i.e., maximum 0.17 millimetres. In this study, photogrammetric method gives the DEMs with a lower slope for the rough maquette (on average 40.5 versus 46 for the laser method) and higher slope for the soft maquette (about 23.5 versus 20.7 for the laser method). The results showed the DEMs provided by photogrammetric method is able to perform accurate estimation for RR and provides good estimation for the MDS. Therefore, it can be useful in erosion and hydraulic studies.
N Shahmirzaee, S Kamgar,
Volume 13, Issue 47 (4-2009)
Abstract

One of the most important goals of precision farming is preparing yield map. Recently in Iran, planting of corn has received special attention. Therefore, among the different methods of yield measurement such as using impact sensor at the outlet port of forage harvester (chopper), displacement sensors at feed rollers of forage harvester, continuous measurement of discharged material to trailing wagon and using the torque meter, the present study made use of the torque meter method. This method consisted of a torque transmitting shaft equipped with laser-based encoders to monitor twist in a real time mode. The unit output could be exported to a computer via a microcontroller installed into the interface device. For calibration of the torque meter output with material feed rate in lab conditions, a conveyor was used to feed homogenous amount of material at a specific rate to the chopper. The experiment was conducted at 3 feed rates of silage corn and at 3 feed roll speeds of the chopper with 3 replications. Correlation between the feed rate and recorded power at different gears of the chopper was established. Relationships between feed rate and recorded power of the chopper at gears 1, 2 and 3 were linear with calculated R2 of 0.95, 0,98 and 0.98, respectively.
A. Sanaei Ostovar , A.h. Khoshgoftarmanesh , M.h. Mirzapour ,
Volume 14, Issue 54 (winter 2011)
Abstract

This study was conducted to investigate nutritional status and some quality aspects of greenhouse cucumber in Qom province. After selecting 20 greenhouses, concentrations of macro- and micronutrients as well as lead (Pb) and cadmium (Cd) in soil and plant were measured. In addition, some fruit quality attributes were determined. Phosphorus (P) and potassium (K) concentrations in soils were much higher than their critical levels. The mean concentrations of soil DTPA-extractable iron (Fe), copper (Cu), and manganese (Mn) were 12.0, 1.98, and 14.5, respectively. The mean concentration of calcium (Ca) in cucumber leaf was high while in fruit was lower compared to its sufficiency level. Most fruit samples were deficient in K, Fe, Zn, Cu, and Mn. The mean nitrate (336 mg kg-1) and Pb (0.34 mg kg-1) concentrations in cucumber fruits were higher than their acceptable levels. Ascorbic acid concentration of fruits showed positive correlation with Fe concentration. Also, fruit Mg concentration had a positive correlation with the total dissolved solids and negative correlation with fruit moisture content. The results indicated that improper nutrition management in Qom cucumber greenhouses has caused micronutrients deficiencies and high nitrate and Pb concentration, which are important to consumers' health.
S. M. J. Mirzaei, , S. H. Tabatabaei, M. Heidarpour, P. Najafi,
Volume 17, Issue 66 (winter 2014)
Abstract

There chemical and organic matter content in garbage leachate that may affect soil physical and hydraulic properties. The main objective of this study was to evaluate the influences of the leachate of Isfahan Organic Fertilizer Factory (IOFF) on some soil physical and hydraulic properties in a soil chemically enriched by Zeolite. The treatments include two soil textures (clay loam and sandy loam) and three levels of zeolite (0, 5 and 10 percent). The treatments were applied on lysimeters scale. The results showed that irrigation with the leachate caused a reduction of infiltration and hydraulic conductivity in the clay loam soil. The hydraulic conductivities in clay loam soil without zeolite (B0) before and after irrigation with leachate were 1.73 and 0.36 m/day, respectively. In contrast, there were no changes in the sandy loam soil’s infiltration and hydraulic conductivity. The hydraulic conductivities in the sandy loam soil with 5 percent zeolite (A5) before and after irrigation with leachate were 3.17 m/day. Furthermore, zeolite had a decreasing effect on those processes. The results show that irrigation with leachate caused reduction of bulk density in two types of soil and all levels of zeolite.
M. Alizadeh, F. Mirzaii, T. Sohrabi , M. Kkavosi , M. R Yazdani,
Volume 17, Issue 66 (winter 2014)
Abstract

Water management in cracked paddy soils is an important issue in rice cultivation. In order to study organic matter and zeolite effect and their interaction on moisture conditions and hydraulic and physical properties of paddy soils, the organic matter (rice straw) at four levels (0, 8, 16 and 24 tons per hectare), zeolite at four levels (0, 0.5, 1 and 1.5 percent ), and also moisture stages of soil at 5 levels were selected. This experiment was conducted in Rice Research Institute of Iran. Randomized Complete Block Design (RCBD) was used to study the effect of treatments on different subjects. The amount of moisture, bulk density and the distance of soil from the wall of container were measured in a 4-month period. The obtained results showed that the interaction effects of organic matter and zeolite on soil moisture content were statistically significant at one percentage level. Addition of plant residues caused an increase in soil moisture weight and reduction in bulk density compared to the control treatment. It was also found that soil moisture content and bulk density were highly correlated. Bulk density of control treatment ranged from 0.75 to1.7 gr/cm3, while with addition of 1.5 % crop residue the bulk density ranged from 0.7 to 1.3gr/cm3. Overall results show that crop residues are effective in reduction of crack parameters of soil , but zeolite cannot be effective although it causes more maintenance of soil moisture.
N. Jafarzadeh Haghighi Fard, M. Abbasi, R. Alivar Babadi, H. Bahrani, A. Mirzaie, M. Ravanbakhsh,
Volume 19, Issue 71 (spring 2015)
Abstract

As there are some health and environmental concerns about wastewater, dewatered sludge, increase in green waste, and restricted legislation about burning them outdoors, environmental health engineers are investigating to find a simple, cost effective and efficient method. This is aimed to have healthy, safe and sustainable disposal of such materials. Co-composting of sludge and green waste is a newly developed process which can help us to achieve this goal. This study was to investigate the most suitable ratio of dewatered sludge to green waste from Chonibieh wastewater treatment plant in Ahvaz, Iran, and assess the feasibility of co-composting of this waste. So, dewatered sludge was composted with green waste as a bulking agent in three different ratios (1:1 ,2:1 ,3:1 : green waste: dewatered sludge W:W). Then composting proceeded in pilot vessels (M1, M2, M3) for 23 days. The C/N ratio, the percentage of total nitrogen, phosphorus, total organic carbon, humidity and pH were tested in certain periods and compared with the national standards. This study showed that in M1, M2, M3 pilots, all parameters (except for total phosphorus) including C/N ratio, percentage of total nitrogen and total organic carbon, humidity, pH could meet class 1 national standard in Iran. Moreover, this compost product could meet the EPA microbial standards, class A. So, the product of this compost process is completely stabilized and could be used in agricultural lands.


R. Mirzaei, K. Rahimi, H. Ghorbani, N. Hafezimoghades,
Volume 19, Issue 73 (fall 2015)
Abstract

Determining the spatial distribution of different contaminants in soil is essential for the pollution assessment and risk control. Interpolation methods are widely used to estimate the concentrations of the heavy metals in the unstudied sites. In this study, the performances of interpolation methods (inverse distance weighting, local polynomials and ordinary Kriging and radial basis functions) were evaluated to estimate the topsoil contamination with copper and nickel in Golestan Province. 216 surface soil samples were collected from Golestan province, and their Cu and Ni concentrations were measured. Soil contamination was determined using different interpolation methods. Cross validation was applied to compare the methods and estimate their accuracy. The results showed that all the tested interpolation methods have an acceptable prediction accuracy of the mean content for soil heavy metals. RBF-IMQ and IDW1 methods had the lowest RMSE, whereas RBF-TPS method with the largest RMSE estimated a larger size for the polluted area. The greater the weighting power, the larger the polluted area estimated by IDW. Compared with the ‘‘sample ratio over the pollution limits” method, the polluted areas of Cu and Ni were reduced by 8.38% and 6.14%, respectively.


R. Valizadeh Yonjalli, F. Mirzaei Aghjehgheshlagh, A. Ghorbani,
Volume 19, Issue 73 (fall 2015)
Abstract

This study was conducted to determine some mineral content concentration in soil and plant of three elevation classes (1500, 2200 and 3000m) and two phenological stages of flowering and seedling start in north-facing slopes of Sabalan rangelands. Soil samples from the depth of 20cm and plant samples using 1×1m plots with 10 replications were collected. After sample preparation, the concentrations of minerals such as calcium, phosphorous, sodium, potassium, ion, copper, zinc and magnesium were determined using spectrophotometer and flame photometer. Data was analyzed by SAS9.1 software using Completely Randomized Design with a Generalized Linear Model procedure. Results showed that elevation had a significant effect on Ca, Fe, Cu, Zn and Mn of soil and P, Na, K, Mg and Mn of plants in the study areas (P&le0.05). Growing stages had a significant effect on all elements of plants except Ca (P&le0.05). Moreover, results showed that in three elevation classes the high demand minerals’ concentration was higher at the starting seedling stage in comparison with the flowering stage. In contrast, the low demand minerals’ concentration in three elevation sites was higher in the flowering stage in comparison with seedling stage. Interaction effect of elevation and growing stage was also significant in relation to all elements except Ca (P&le0.05).


S. Moradi Behbahani, M. Moradi, R. Basiri, J. Mirzaei,
Volume 20, Issue 78 (Winter 2017)
Abstract

Salt cedar is widely spread out in most part of the country but there is lack of information about its symbiosis with arbuscular mycorrhizal fungi. Then, the main objective of this study was to evaluate the symbiosis of AMF with salt cedar and its affectability by distance from river and soil physiochemical properties. For this purpose, riparian Maroon forest width was divided to three locations including riverside area, intermediate area and the area far from river with 200-hundred-meter interval. In each site 10 salt cedars were randomly selected and soil plus hair root samples were gathered from the salt cedar rhizosphere. Our result indicated that root colonization and spore density in the intermediate distance had the lowest and highest values, respectively. These values were significantly different compared to the other two sites. The average root colonization percent in the riverside area, intermediate area and the area far from river sites were 82.37, 73.77 and 80.17, respectively. While the average spore density in the riverside area, intermediate area and the area far from river were 189, 245.5 and 188.8 in five gram soils, respectively. Root colonization had significant positive correlation with soil potassium while spore density had significant correlation with studied soil physiochemical properties. Also, soil nitrogen, organic carbon, potassium and clay showed 52.6, 51.19, 50 and 23.4% decreasing trend from the riverside area to the area far from river. Regarding this research results, salt cedar showed high level of symbiosis with arbuscular mycorrhizal fungi but this symbiosis could be affected by distance from river in riparian forest.


R. Mostafazadeh, Sh. Mirzaei, P. Nadiri,
Volume 21, Issue 4 (Winter 2018)
Abstract

The SCS-CN developed by the USDA Soil Conservation Service is a widely used technique for estimation of direct runoff from rainfall events. The watershed CN represents the hydrological response of watershed as an indicator of watershed potential runoff generation. The aim of this research is determining the CN from recorded rainfall-runoff events in different seasons and analyzing its relationship with rainfall components in the Jafarabad Watershed, Golestan Province. The CN values of 43 simultaneous storm events were determined using SCS-CN model and the available storm events of each season have been separated and the significant differences of CN values were analyzed using ANOVA method. The Triple Diagram Models provided by Surfer software were used to analyze the relationships of CNs and rainfall components. Results showed that the mean values of CN were 60 for summer and winter seasons and the CN values in the spring and autumn seasons were 50 and 65, respectively. The inter-relationships of CN amounts and rainfall characteristic showed that the high values of CNs were related to high rainfall intensities (>10 mm/hr) and rain-storms with total rainfall more than 40 mm. Also the CN values were about >70 for the storm events with 40-80% runoff coefficient values.

M. R. Mirzaei, S. Ruy,
Volume 22, Issue 4 (Winter 2019)
Abstract

Preferential flow is of great importance in the environment and the human health. So, rapid water transportation and consequently, pollutants and pesticides leak out and get into the groundwater, making it very difficult to measure and quantify. To quantify and describe the preferential flow, two gravity-driven models were used: 1) kinematic wave model (KW) introduced by Germann in 1985), and 2) kinematic dispersive wave (KDW) model developed by applying a second-order correction to the Germann’s model by Di Pietro et al. in 2003. So, the experimental data was obtained using the laboratory mini-rainfall-simulator over cylindrical soil samples at the laboratory. Their parameters were obtained using Solver add-ins in the Excel software. Then, the results were compared using the root-mean-square error (RMSE). The results showed that the KDW model could better predict the preferential flow (with lower RMSE). Also, the regression results showed 1) there was no significant relation between the preferential flow and the total porosity, and 2) there is a significant relation between the preferential flow and the macrospores.

M. Pourmirza, A. Kamanbedast,
Volume 23, Issue 4 (Special Issue of Flood and Soil Erosion, Winter 2019)
Abstract

Occurrence of local scour is one of the most significant causes of damage to the pipes. Therefore, safe and economical design of pipes in the flow path requires a good estimate. In this study, based on the important and effective parameters in the scouring phenomenon, in order to develop educational patterns according to the data obtained in the laboratory of Ahvaz Islamic Azad University, models based on artificial neural networks were created with the NeuroSolution5 software. MLP, GFF and RBF were the models used in this study; after comparing, MLP was selected as the basis for our study. Finally, the effect of each parameter on scouring was determined using the  artificial neural networks technique, based on which the  shields parameter with a very high effect (more than 95 percent) was determined as one of the most effective causes of the local scour.

F. Mohammadmirzaei, M. Zakerinia, A. Hezarjaribi,
Volume 24, Issue 2 (Summer 2020)
Abstract

Increase in population, agricultural development, and the reduction of surface water resources have resulted in an untapped harvest of ground water. On the other hand, the lack of attention to the balance between the exploitation and recharge of aquifers has led to a drop in water level in the aquifer. To understand the behavior of the ground water system and the status of resources and uses in the basin, as well as the situation of water exchange in these two parts, it is possible to connect reliable groundwater and surface water models The purpose of this study was to simulate Gorganroud aquifer flow by using using the groundwater model to understand the behavior of the aquifer system in different hydrological conditions and to provide a management solution to improve the  supply and demand conditions. First, the status of the aquifer under study was simulated by using the information available in the area by Modflow; then the groundwater model results were transferred to the Water Evaluation and Planning model (WEAP) by the LINK KITCHEN Software. Then different management scenarios including increased irrigation efficiency in agriculture,  the use of refinery effluents and  the reduction of river flow due to climate changes were considered as two combinations of the above scenarios to alleviate water demand under this scenario; so, projections for a period of 20 years water resources of the basin were studied. The results of modflow calibration showed that there was a good agreement between observation and simulated water table, such that the RMSE for Steady and Transient condition was 0/972 and 0/97, respectively. The results also showed that simultaneously applying multiple water management strategies seems to be better than any of its individual states, thereby reducing water withdrawal on various resources.

E. Mirzakhani, H. Motaghian, A. Hosseinpur,
Volume 25, Issue 4 (Winiter 2022)
Abstract

Pollution of the environment by heavy metals, especially soil pollution with cadmium (Cd), is one of the most important environmental problems. Also, salinization of soils due to a decrease in irrigation water quality reduces plants growth. To investigate the effect of sugarcane bagasse biochars and salinity on Cd available and Cd fractions in a contaminated soil (15 mg kg-1 Cd), an experimental factorial design in a completely randomized design including (1) biochar factor with control, 1% (w/w) bagasse, 1% (w/w) biochar 400 °C and 1% (w/w) biochar 600 °C, and (2) salinity factor with control, 20, and 40 mmol kg-1 as sodium chloride were performed in 3 replications. The amount of available Cd was determined by the DTPA-TEA method and the Cd fractions were determined by Tessier et al. (1979). The results showed that biochar and salinity had no significant effect on soil pH (P > 0.05) but increased soil EC (P < 0.05). Interaction of biochar and salinity was not significant (P > 0.05) on available Cd and Cd fractions. Biochar application reduced Cd -DTPA-TEA (P < 0.05), whereas salinity increased Cd -DTPA-TEA (P < 0.05). Application of biochar prepared at 600 °C reduced (P < 0.05) exchangeable Cd (23.8%) and increased (P < 0.05) Cd associated with iron and manganese oxides (25.2%) and residual (15.6%) compared to the control. The results showed that salinity had no significant effect on the Cd fractions (P > 0.05) and soil treated with sugarcane bagasse biochar can reduce Cd available due to changing the Cd distribution from unstable forms to stable forms.
E. Mirzakhani, H.r. Motaghian, A.r. Hosseinpur,
Volume 27, Issue 3 (Fall 2023)
Abstract

In addition to the distribution of elements in the soil solid phase, element species in the solution are also very important due to their importance of providing elements for root uptake. For a deeper study of the chemical cycle of elements in saline soils treated with biochar, the study of speciation is very useful and provides a method to reduce or transform the toxicity caused by toxic elements in saline soils. Therefore, to investigate the effect of biochar on Cd speciation in two saline calcareous soils, 15 mg kg-1 Cd as cadmium chloride was added to the soil sample (200 g), and the soils were incubated for three weeks at 25±2 °C at 80% field capacity. After the incubation period, salinity levels of 20 and 40 mmol kg-1 as sodium chloride (equal to 3.65 and 7.30 dS m-1) were added to the soils. Then, the 1% (w/w) of the sugarcane bagasse and biochars produced at 400 and 600 °C were added to the soils, and then incubated for three months at 25±2 °C at 80% field capacity. At the end of the incubation period, for the speciation of Cd in the soil solution (in a 1 to 2 ratio), the concentration of dissolved cations and anions in the soil samples was measured. The results showed that the interaction between salinity, biochar, and soil on Cd2+, CdCl+, CdCl20, and Cd(SO4)22- was significant. The application of biochar in sandy soil reduced (p <0.05) the concentration of CdCl+, CdCl20, CdSO40, and CdOH+ species compared to the control soil, while it did not affect clay soil. Also, salinity caused by sodium chloride in sandy soil increased the concentration of CdCl+ and CdCl20 species and decreased CdSO40 and CdOH+ species compared to the control soil (p <0.05). The results showed that biochar in saline sandy soil was more effective than clay soil in reducing Cd toxicity.


Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb