Search published articles


Showing 55 results for Hadi

M. Noshadi, A. Babolhakami,
Volume 21, Issue 3 (Fall 2017)
Abstract

The uniformity parameters in drip irrigation system are influenced by the slope of manifold and therefore, the evaluation of drip irrigation systems is important in slopping lands. In this research, different slopes of 0.2, 6, 11, 16, 20 and 25% were applied on the ground surface and manifold of drip irrigation system with diameters of 50, 63 and 75 mm and length of 70 m were installed on these uniform slopes. The lateral pipes with 16 mm diameter and 40 m length were placed on the contour lines and connected to manifold bilaterally. The results showed that in the normal emitters in above slopes, the qv(avg) values were 289, 6740, 46, 135, 38 and 27 percent, respectively, qv(max) values were 222, 48, 53, 90, 27 and 9 percent, respectively, and the CV values were 300, 114, 33, 140, 63 and 25 percent, respectively, higher than compensating emitters. However, in the normal emitters in above slopes, the EU values were 33, 34, 12, 25, 17 and 9 percent, respectively, EUa values were 26, 23, 6, 21, 15 and 13%, respectively, UC values were 17, 16, 4, 13, 14 and 9%, respectively, and US values were 10, 8, 2, 8, 5 and 4 percent, respectively, less than compensating emitters. Therefore, even in high slopes (20 and 25%), the irrigation efficiency in compensating emitters were better than normal emitters. The relationship between slope and discharge of emitters represented small changes in discharge of compensating emitters in sloping lands.
 


A Fararooei, M. Noshadi, S. Amin Sichani,
Volume 22, Issue 1 (Spring 2018)
Abstract

PCBs are persistent organic pollutants which, due to high environmental hazards, must be traced, determined, and decomposed to reduce their risks. . To detect this material in the soil, the method of extraction and appropriate measuring conditions should be investigated. Two soil samples with two kg weight were selected with two different soil textures and the solutions of soil were made with the 1000 µg/ml aroclor 1254 mixture in a GC device. . Agilent GC-MS with stationary phase (CP 7477) was used to measure aroclor 1254. The analysis of variance and the test of the extraction mean of aroclor 1254 were compared in two soil textures. The results suggested that coarse texture soil (sandy loam) had a higher extract than the fine one (silty loam). The difference was statistically significant (P< 0.01). These findings suggested that the soil texture affected the extraction of aroclor from soil. In addition, four different levels of moisture (5%, 10%, 15% and 20%) produced in two soil textures and aroclor were measured. The highest level of extraction was obtained at 20% moisture, which was significantly higher than that in other levels (P< 0.01). The difference between the mean of extractions in the soil samples with 10% and 15% levels of moisture was non-significant (P> 0.05).

J. Ahadiyan, B. Mardasi,
Volume 22, Issue 1 (Spring 2018)
Abstract

Discharge of contaminants in the acceptor ambient has negative environmental impacts. Extremely shallow acceptor ambient conditions will have a significant impact on the diffusion of the contaminants flow. To achieve the effect of the hydraulic, geometric and environmental conditions of the contaminant flow in the acceptor ambient, an experimental model of surface draining was applied. The model consisted of a flume with 3.2 meters length, 0.6 meters width and 0.9 height. Accordingly, by considering three simple single drainers with the diameters of 1.2, 1.6 and 2.2 centimeters, a dense flow with 20, 40 and 60 g/L concentrations occurred in an acceptor ambient with H/d = 2. The results showed that equilibrium length was extremely decreased by increasing the concentrations; this was such that with increasing the concentration three times from 20 to 60 g/L, this length was decreased from 25 to 10. However,  based on  the results, it was found that the effect of  the changes of  the viscosity parameter over the relative length was significant, as its effect was high in all concentrations to 100; then it tended  to become a constant value.. In this regard, the effect of changes in the surface tension parameters over the relative length was investigated; the results showed that this parameter was always effective in the extremely shallow acceptor ambient at all stages from the beginning to the end of the  progress. It is important to note that this had a constant slope in all concentrations and surface tension had an effect on flow diffusion with a certain trend in all concentrations. In fact, surface tension in all concentrations reached to 5 after the equilibrium length and jet energy dissipation area.

S. F. Mousavi, H. R. Vaziri, H. Karami, O. Hadiani,
Volume 22, Issue 1 (Spring 2018)
Abstract

Exploitation of dam reservoirs is one of the major problems in the management of water resources. In this research, Crow Search Algorithm (CSA) was used for the first time to manage the operation of reservoirs. Also, the results related to the exploitation of the single-reservoir system of Shahid-Rajaei dam, located in Mazandaran province, northern Iran, which meets the downstream water demands, were compared to those obtained by applying the Particle Swarm and Genetic algorithms. Time reliability, volume reliability, vulnerability and reversibility indices, and a multi-criteria decision-making model were used to select the best algorithm. The results showed that the CSA obtained results close to the problem’s absolute optimal response, such that the average responses in the Crow, Particle Swarm and Genetic Algorithms were 99, 75 and 61 percent of the absolute optimal response, respectively. Besides, except for the time reliability index, the CSA had a better performance in the rest of the indices, as compared to Particle Swarm and Genetic Algorithms. The coefficient of variation of the obtained responses by CSA was 14 and 16 times smaller than the Genetic and Particle Swarm Algorithms, respectively. The multi-criteria decision-making model revealed that the CSA was ranked first, as compared to the other two algorithms, in the Shahid-Rajaei Reservoir's operation problem.

M. H. Tarazkar, M. Zibaei, G.r. Soltani, M. Nooshadi,
Volume 22, Issue 2 (Summer 2018)
Abstract

Nowadays, water resource management has been shifted from the construction of new water supply systems to the management and the optimal utilization of the existing ones. In this study, the reservoir operating rules of Doroodzan dam reservoir, located in Fars province, were determined using different methods and the most efficient model was selected. For this purpose, a monthly nonlinear multi-objective optimization model was designed using the monthly data of a fifteen-year period (2002-2017). Objective functions were considered as minimizing water scarcity index in municipal, industrial, environmental and agricultural sectors. In order to determine the operating rule curves of reservoir, in addition to the nonlinear multi-objective optimization model, the methods of ordinary least-squares regression (OLS), fuzzy inference system and adaptive network fuzzy inference system (ANFIS) were used. Also, the reliability, resiliency, vulnerability and sustainability criteria were used to compare the different methods of reservoir performance rules. The results showed that ANFIS model had the higher sustainability criterion (0.26) due to its greater reliability (0.7) and resilience (0.42), as well as its lower vulnerability (0.13), thereby showing the best performance. Therefore, ANFIS model could be effectively used for the creation of Doroodzan reservoir operation rules.

M. Noshadi, S. Karimi,
Volume 22, Issue 3 (Fall 2018)
Abstract

The growth of world population and the demand for agricultural products can be regarded as one of the important issues that humanity has ever faced. There are serious concerns regarding surface and ground water pollution by nitrates because of using nitrogen fertilizers in the agriculture. Improving agricultural water management systems can reduce nitrate in drainage outflow and therefore, reduce the environmental pollution. This research was conducted to evaluate the effect of the controlled drainage and nitrogen fertilizer on nitrate leaching and environment pollution as a factorial randomized complete block design in Shiraz College of Agriculture. The treatments consisted of three fertilizer levels; 0, 200 and 300 kgN/ha, and three water table depths: free drainage, control water table at 60cm (CD60) and 90 cm (CD90) depths, respectively. According to the results, the value of drainage water and nitrate losses in the controlled drainage toward free drainage were significantly increased. The mean reduction of drainage water in CD60 and CD90, as compared to free drainage, was 59.3 and 35.7%, respectively. The decrease nitrate losses, as compared to free drainage, was 72 and 44%, respectively. The total value of nitrate leaching in 200 and 300 kgN/ha fertilizer treatments was 1.86 and 2.48 times of 0 kgN/ ha.

P. Hadipour Nicktarash, H. Ghodousi, K. Ebrahimi,
Volume 22, Issue 4 (Winter 2019)
Abstract

One of the factors leading to the contamination of water resources is human activity, producing waste materials. In this paper, the effects of contamination on the water quality of Taleghan River, was simulated using of Qual2k model and the seasonal changes were evaluated. The qualified data collected during two months, August (as the dry season) and February (as the wet season), were used in the modelling. The results showed that the dissolved oxygen change was in the range of 4.5-6.52 mg/L in August. However, it changed between 4.8-5.3 mg/l in February and this reduction in the wet season was due to the run off deposition and the seepages of farmland near the river. Furthermore, BOD in the wet season and the dry season changed by 6-31 and 10-26 mg/l, respectively. These changes were due to the sewage dilution in flow during the wet season. Evaluation of the pH values in wet and dry seasons also showed that water of the river was more alkaline in the wet season, which is due to the effect of non-point resources or the fertilizer entrance after farm land bleaching by rain. Evaluation of Taleghan river EC variation also showed these changes were not significant during the wet and dry seasons. Water temperature was altered by 3-100C and 19-250C, respectively, in February and August.

F. Hadian, R. Jafari, H. Bashari, M. Tarkesh,
Volume 23, Issue 4 (Special Issue of Flood and Soil Erosion, Winter 2019)
Abstract

Soil moisture is one of the most important factors that can affect productivity in ecosystems in arid and semiarid regions. The aim of this study was to investigate soil moisture and vegetation changes in the Isfahan province at the seasonal scale. For this purpose, MODIS Land Surface Temperature (LST) and NDVI data were used to calculate the TVDI index, and the rate of soil moisture content was also measured at several soil depths including 5, 10, 20, 30 cm. in the growing season. Seasonal changes of LST and NDVI indices were also studied in different climate regions ranging from humid to hyperarid. The results showed that the changes in NDVI and LST in this region were different, depending on the climate type and soil conditions; the LST and its changes mostly depended on the amount of vegetation cover NDVI changes based on the plant phenology in humid regions, which was were greater than that in arid and semi-arid climates. Soil moisture monitoring indicated that the relationships between TDVI and different soil depths varied based on the seasonal conditions. In the early growing season, the soil moisture at the depth of 0-5 cm had a higher correlation with TVDI, but in the middle of growing season, the deeper soil moisture (10-30 cm) showed the highest correlation. Therefore, the findings of this research indicated the importance of the growing season, soil conditions and vegetation percentage and types in the soil moisture studies by using satellite data.

E. Ebrahimi, M. Zare Shahraki, O. Farhadian, Y. Keivany,
Volume 23, Issue 4 (winter 2020)
Abstract

Benthos play an important role in the transmission of primary production and organic material (detritus) accumulation of the substrate in the water ecosystems to the higher levels of food chain. Also, they are used as biological indicators to evaluate the effect of pollutants caused by human activities on water ecosystems. To evaluate the benthic communities of Zayanderood Dam Lake, 4 sampling stations were selected on the lake; then, during the year 2014, seasonal sampling at each station was performed. The sampling was carried out by using the sediment sampler instrument with the dimensions of (20 cm × 20 cm). The average temperature of surface and deep water in the Zayanderood Dam Lake during the study was estimated to be 15.6 ± 2.4 and 8.9 ± 1.8°C, respectively. The average concentration of dissolved oxygen in the surface and deep water was varied from 10.3 ± 0.6 to 8.1 ± 0.7 mg/L, respectively. Totally, 2165 samples of benthos were collected and identified in the Zayanderood Dam Lake, belonging to 3 classes, 6 orders and 5 families. The maximum number of samples belonged to Tubifex, Naididae and Chironomidae genera. The dominant genus was Tubifex in all stages. According to this study, therefore, it seems that the structure of substrate, the amount of nutrients, grazing pressure and hydrostatic pressure are the most important environmental factors that can affect benthic community in the Zayanderood Dam Lake.

M. Noshadi, A. Ahadi,
Volume 23, Issue 4 (winter 2020)
Abstract

Groundwater supplies a major portion of two basic human needs: drinking and agricultural water. Forecasting, monitoring, evaluating the performance and planning of this vital resource require modelling. The lag time of the groundwater level fluctuations against the rainfall is one of the essential data of the models. The purpose of the present study was to evaluate the piezometers behaviour by using the Pearson cross-correlation method between SPI and GRI indices in the Shiraz alluvial plain in order to determine the mentioned lag time. The results showed a similar behaviour for 86.2% of the piezometers. In 79.3% of the piezometers, groundwater level was declined one month after the rainfall event. The best correlation coefficient between the aforementioned indices was observed along the southwestern to the northeastern axis of the plain. The northern alluvial plain has a better correlation, as compared to the southern section because of the northern-southern slope of the plain. The central area of the plain had the highest correlation coefficient. The maximum correlation coefficients occurred at a time scale of 48 months. Also, since 2004, due to the decline in the atmospheric precipitation in the Shiraz plain, the SPI index has surpassed the drought level, although the trend has not been significant. However, the GRI does not follow this trend, showing a significant hydrological drought. The reason can be the disproportionate water extraction to recharge ratio in the alluvial aquifer of the plain.

F. Mehri Yari, H. Pirkharrati, Kh. Farhadi, N. Soltanalinezhad, F. Naghshafkan,
Volume 24, Issue 1 (Spring 2020)
Abstract

Soil pollution by heavy metals is a serious environmental problem that threatens the human health. The present study was carried out to investigate and detect the contamination of heavy metals of arsenic, copper, lead, zinc and iron due to human and natural activities in the sediment of lake bed and the surface soils of the eastern part of Urmia Province, West Azarbaijan Province. A total of 20 soil samples and surface deposition from the depths of 0 to 30 cm were collected randomly from the studied areas. After preparing the samples, extraction was carried out to determine the concentration of the heavy metals in the soil by using hydrochloric acid and nitric acid, and the total concentration of metals was measured using ICP-OES. The results of the calculation of the contamination factor showed that copper, iron, zinc and lead in the class of low and medium pollution and arsenic in 65.5% of the samples were very high in the class. The high concentrations of copper, lead and zinc contamination in the margin of the city and the contamination of arsenic in the lake bed were observed. The analysis of the contamination factor maps and contamination index with land use and geological map showed that copper, lead and zinc were mostly affected by human activities and arsenic influenced by the maternal materials in the region.

H. Kheibar, S. M. Sajjadi, J. Ahadiyan,
Volume 24, Issue 3 (Fall 2020)
Abstract

Lopac gates, with the benefits of easy installation, automation and the ability to pass sediments and floating objects, are among the new structures considered for water level regulation and flow control in the irrigation canals. Converting the shape of the gate from a rectangular one to an elliptical one allows the flow rate to be increased by the same water level. In the present study, the effect of the sudden transition on the discharge and energy dissipation of the elliptical-lopac gate (ELG) in the submerged flow conditions was evaluated in the laboratory. The results showed that the dimensionless discharge and energy dissipation of the ELG with sudden transition to channel width conditions was decreased by 28 to 86% and increased by 11 to 35%, respectively. Finally, the statistical equations were presented to estimate the dimensionless discharge and energy dissipation of ELG by sudden transition under submerged flow conditions with a maximum error of 16%.

M. Alinezhadi, S. F. Mousavi, Kh. Hosseini,
Volume 25, Issue 1 (Spring 2021)
Abstract

Nowadays, the prediction of river discharge is one of the important issues in hydrology and water resources; the results of daily river discharge pattern could be used in the management of water resources and hydraulic structures and flood prediction. In this research, Gene Expression Programming (GEP), parametric Linear Regression (LR), parametric Nonlinear Regression (NLR) and non-parametric K- Nearest Neighbor (K-NN) were used to predict the average daily discharge of Karun River in Mollasani hydrometric station for the statistical period of 1967-2017. Different combinations of the recorded data were used as the input pattern to predict the mean daily river discharge. The obtained esults  indicated that GEP, with R2= 0.827, RMSE= 59.45 and MAE= 26.64, had a  better performance, as compared to LR, NLR and K-NN methods, at the  validation stage for daily Karun River discharge prediction with 5-day lag, at the Mollasani station. Also, the performance of the models in the maximum discharge prediction showed that all models underestimated the flow discharge in most cases. 

S. Farhadi, M. Galoie, A. Motamedi,
Volume 26, Issue 1 (Spring 2022)
Abstract

One of the important relationships which are used in the estimation of river discharges and floods is Intensity-Duration-Frequency (IDF). The accuracy of this relation is dependent on the accuracy of its parameters which need to be found based on short-duration rainfall depths (such as 15, 30, 60 minutes, and so on) for a long term (i. e. 30 consecutive years). Unfortunately, only 24-hour rainfall depths are available in many rainfall stations in Iran. Various empirical relations are available to convert 24-hour rainfall depth to sub-daily. One of these methods is IMD and its accuracy in some regions is low. In this research, the IMD method was transformed into a single-parameter equation and then, this parameter is evaluated for some rainfall stations in Iran. To do this, maximum 24, 12, 6, and 3-hour rainfall depths were extracted and their frequencies were calculated using Weibull and Gumbel methods. Regional coefficients in the modified IMD method were estimated using a linear regression method. Although the power of the IMD method is 0.33, results showed that this parameter for the rainfall stations ranged from 0.28 to 0.35. To make more comparison, the IDF relation of Kordan’s watershed was calculated using the short-duration rainfall depth which was estimated using the modified IMD, and then, this IDF was compared to observed data and Ghahraman’s relation which is commonly used in Iran. The comparison showed that the modified IMD relation could estimate the short-duration rainfall data better than Ghahraman’s relation. After calibration of the modified IMD relation for various regions in Iran, the sub-daily rainfall depth can be obtained with high accuracy.

S. Jamali, H. Banejad, A. Safarizadehsani, B. Hadi,
Volume 26, Issue 1 (Spring 2022)
Abstract

This research was conducted to study the effect of deficit irrigation and saline water on yield and yield components of Peppermint in the experimental research greenhouse of Ferdowsi University of Mashhad from 2018 to 2019. This research was performed as a factorial experiment based on the randomized complete design with three replications. In this research, irrigation levels consist of 4 levels (100 (I1), 80 (I2), 70 (I3), and 55 (I4) percent of FC) and saline water factors consist of 4 levels (0.9 (EC1), 1.9 (EC2), 2.5 (EC3), and 3.4 dSm-1 (EC4)). The result showed that a decrease of the water to 15, 30, and 45 percent have resulted in the reduction of shoot fresh weights (to 15.8, 28.4, and 30.1 percent), shoot dry weights (to 7.1, 11.5, and 11.5 percent), and root dry weights (to 4.6, 9.2, and 9.2 percent), respectively. Also, results showed that irrigation with EC2, EC3, and EC4 has resulted in a decrease in shoot fresh weights (to 12.7, 28.5, and 34.0 percent), shoot dry weights (to 3.6, 11.6, and 11.6 percent), and root dry weights (to 6.7, 12.4, and 14.6 percent), respectively. The result indicated that interaction effects of salinity and water stress decreased peppermint water productivity, as the highest and lowest peppermint water productivity with 3.54 and 2.06 Kgm-3 were in the EC1I4 and EC3I1 treatments, respectively. Results revoluted that maximum dry yield and peppermint water productivity were in the EC1I4, so this treatment was recommended for irrigation of peppermint.

M.a. Mohammadi, H. Ebrahimnezhadian, M. Asgarkhan Maskan, V. Vaziri,
Volume 26, Issue 2 (ُSummer 2022)
Abstract

The study of annual damage statistics due to floods in Iran and the world shows the extent of flood damage to natural and human resources in different regions. Determining the flood zone of rivers in order to protect national resources and reduce flood damage provides the possibility of protecting the river from encroachment and the construction of any unauthorized facilities in it. Therefore, in the present study, the capability of numerical models in simulating the flood zone of rivers was evaluated in the range of Azarshahr Qushqura river and the two-dimensional hydraulic model HEC-RAS 5.0.7 and one-dimensional HEC-RAS model were compared. Changes in the hydraulic characteristics of the flood flow including depth and velocity of the flow at different cross sections of the models were evaluated. The results showed that the water surface level (flow depth) of the two-dimensional model HEC-RAS compared to the one-dimensional model had the lowest error as compared to other hydraulic parameters of flood flow. The two-dimensional HEC-RAS model showed the highest error rate in the flow velocity parameter in comparison to the one-dimensional model. The results indicated that two-dimensional HEC-RAS model V5.0.7 determined the surface of the flood zone 12.46 % more than the one-dimensional HEC-RAS model. The confirmation of the resulting zones on the current state of the river and comparison with the river aerial photo of 1346 indicated the higher accuracy of the two-dimensional HEC-RAS model in estimating the flood zone of the river.

F. Meskini-Vishkaee, A.r. Jafarnejhadi, M. Goosheh, B. Delsooz Khaki, M. Javadzadeh,
Volume 27, Issue 3 (Fall 2023)
Abstract

One of the most common approaches for farm irrigation management is using soil readily available water and allowable depletion coefficient. The objective of this study was to determine wheat crop response coefficients, critical moisture content, and soil allowable depletion coefficient using a physically based method in three dominant soils under wheat cultivation in Khuzestan province. Treatments included full irrigation and water stress at three levels low, moderate, and high. The highest and lowest values of wheat crop response coefficient were related to silty clay loam (Ky=1.26) and clay loam (Ky=0.96), respectively. Critical soil moisture content was observed in loam soil (0.25 cm3cm-3)> silty clay loam (0.23 cm3cm-3)> clay loam (0.22 cm3cm-3), respectively. Despite the higher critical moisture content in loam, the most soil allowable depletion coefficient was also calculated in loam (0.54). Soil allowable depletion coefficient in silty clay loam and clay loam were 0.44 and 0.42, respectively. The results confirmed the simultaneous effects of soil and plant properties on the availability of soil water for the plants.

M. Karamdokht Bahbahani, M. Sajjadi, J. Ahadiyan, A. Parsaie,
Volume 28, Issue 1 (Spring 2024)
Abstract

One of the structures for regulating the water level in the irrigation and drainage ducts is the lopac gates, which are proposed as a structure for regulating and controlling the flow level. In this study, a new design of this type of structure has been proposed in which the gates are placed next to each other in pairs, and they are called multiple lopac gates. The objective of this research is to investigate the effective hydraulic parameters of the proposed structure and compare it in a case where a gate is used under the same conditions. All the simulations were modeled with 3 amounts of opening 30, 45, and 60 degrees and at 3 flow rates of 20, 40, and 60 liters per second and using Flow3d software, in these simulations, the number of mesh cells is 1000000 and RNG turbulence model is used.  The results showed that the maximum shear stress was reduced by an average of 38% compared to the single gate mode in most tests at different openings and flow rates using multiple lopac gates, and the largest amount of this reduction was related to the opening of 45 degrees, and the flow rate is 40 liters per second with a value of 76%. Also, the forces acting on the gate at different flow rates and openings will be reduced by 150% on average. In the qualitative investigation of flow vortices, the investigations also showed that vortex range, length, and strength are reduced compared to the single gate mode when two gates are used, and the number of vortices increases compared to when a single valve.

A.m. Kiyani, M. Zeinivand, J. Ahadiyan, I. Falorca,
Volume 28, Issue 2 (Summer 2024)
Abstract

The design of retaining walls depends on the amount of driving pressure from the backfill of the wall. Therefore, estimating this pressure is an essential factor in its design. In this research, the changes in the slope of failure, the place of the failure wedge, and the reduction of the failure line along the length and depth of the embankment were investigated on the retaining wall embankment reinforced with geotextile during ten tests in a laboratory study. The parameters under investigation in this article are the number of layers and the distances between the geotextile layers. The results showed that the presence of geotextile layers reduced the length of the fracture line up to 41%. It has also improved the value of the fracture angle and reduced the formation of the rupture wedge in the lower depths up to a maximum of 16%. The translational movement of the wall in the actuation state has a greater distinction between the fixed point and the failure zone, and the reinforcing layers are also effective in increasing the bearing capacity and stability of the retaining wall.

M. Neisi, M. Sajadi, M. Shafai Bejestan, J. Ahadiyan,
Volume 28, Issue 3 (Fall 2024)
Abstract

Side weirs are hydraulic structures employed in irrigation and drainage channels as diversion devices or head regulators. The increasing efficiency of the structure of side weirs for constant head has been one of the concerns of researchers in the last decade. The use of different forms of sharp crest, labyrinth, piano key, and increasing the length of the overflow by changing the geometry of the crest have been investigated. In this research, a new type of triangular-shaped side weir has been studied in the laboratory under different hydraulic conditions in sub-critical flow conditions. The results demonstrated that by inclining the crests of the triangular side weir, the amount of vortex created at the entrance of the opening was reduced. So the discharge coefficient and the flow volume over the side weir showed an increase of up to 27% and 48%, respectively, compared to the normal triangular and rectangular side weirs. Also, after analyzing the data, a non-linear equation was presented to estimate the discharge coefficient with the dimensionless parameters of the ratio of the upstream depth to the weir height (y1/p) and the upstream Froud number (Fr1) with an accuracy of ±15% and NRMSE=0.134.


Page 2 from 3     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb