Showing 90 results for Plant
P. Ehsanzadeh, A. Zareian Baghdad-Abadi,
Volume 7, Issue 1 (4-2003)
Abstract
Planting density, through its impact on the level of available environmental factors may have significant impacts on grain yield in safflower (Carthamus tinctorius L.). In order to investigate the impacts of plant density on grain yield, yield components and growth characteristics of safflower, a randomized complete block design field experiment with four replicates was conducted in spring-summer, 2000, at Lavark Research Farm (Lat. 320 32, N and Long. 510 23, E), College of Agriculture, Isfahan University of Technology, Isfahan, Iran. Arak-2811 and Kouseh safflower genotypes were seeded at 16.6, 22.2, 33.3 and 50 plants/m2. For establishing these plant densities, plants were seeded in 12, 9, 6 and 4 cm distances, respectively, on ten 8-m-long rows spaced 50 cm apart in each plot. Plant density had no impact on plant growth stages with the exception of button formation. Genotype had significant effects on days to seedling emergence, button formation, and 50% flowering. While both number of days and accumulated growing degree-days for all growth stages decreased with an increase in plant density, Arak-2811 was earlier than Kouseh for most growth stages. Number of branches and heads per plant, number of heads per branch, number of seeds per head and harvest index showed significant decreases with increasing plant density. The decrease in the mentioned grain yield attributes was mainly negated by greater number of plants per m2, leading to no significant variation in grain yield between plant densities of the two genotypes. Arak-2811 produced a significantly greater number of heads per branch and 1000-grain weight however, these differences did not lead to any greater grain yield compared to Kousehdue, mainly due to the greater number of branches in the latter. Neither of the leaf area index, leaf area duration, and crop growth rate varied significantly with plant density and between two genotypes, suggesting no difference in dry matter production capabilities of the two genotypes under environmental conditions of the present study.
A. Azari, M.r. Khajehpour,
Volume 7, Issue 1 (4-2003)
Abstract
Planting pattern through changing vegetative growth and utilization of environmental resourses affects yield components and seed yield. These effects were studied in the spring of 2000 at the Agricultural Research Station, Isfahan University of Technology, using a randomized complete block design with a split plot layout and three replications. Main plots consisted of three row distances (30 cm flat, and 45 and 60 cm on bed), and sub-plots included three planting densities (30, 40, and 50 plants m-2). The experiment was planted on March 13 using local safflower variety of Isfahan, named Koseh. Increase in row distance and plant density enhanced most developmental stages of safflower. Leaf area index was not significantly affected by row distance but increased as planting density increased. Up to the 50% flowering stage, 30 cm row distance produced highest plant dry weight, but had the least dry weight at the end of the growing season, probably due to the strong shedding of leaves. Up to the end of flowering stage, 50 plants m-2 treatment produced the highest plant dry weight, but ranked lower as compared to 30 plants m-2 treatment at the physiological maturity, probably due to the shedding of leaves. Row distance had no significant effect on number of branches per plant and per square meter, number of heads per branch, number of seeds per head, 1000-seed weight and harvest index. But number of heads per plant and per square meter as well as seed yield per plant and per square meter significantly decreased as planting distance increased. Plant density had no significant effect on number of branches per plant, number of heads per square meter, number of seeds per head, 1000-seed weight and seed yield. Increase in planting density increased number of branches per square meter, but reduced number of heads per branch and per plant, seed yield per plant and harvest index. The highest seed yield (4769 kg ha-1) was obtained with 30 cm row distance and 40 plants m-2 treatment. On average, 397 kg ha-1 petal was harvested, which has a large economic value. However, petal clipping, over all treatments, reduced seed yield by about 7.4%. Considering the advantages of uniform distribution of plants and adaptation of safflower to flat planting, 30 cm row distance with 40 plants m-2 might be appropriate for planting safflower under conditions similar to this experiment.
A. Mojiri, A. Arzani,
Volume 7, Issue 2 (7-2003)
Abstract
In order to study the effects of different levels of nitrogen fertilizer and plant density on grain yield and its components in sunflower, an experiment was conducted using 'Record' cultivar at the Research Farm of College of Agriculture, Isfahan University of Technology in 1996. Four levels of nitrogen (0, 75, 150 and 225 kg/ha) and four plant densities (65000, 75000, 85000 and 95000 plants/ha) were used in a split plot arranged in a randomized complete block design with three replications. Developmental stages, plant height, stem diameter, head diameter, number of head per m2, grain yield, biological yield, harvest index, 1000-grain weight, number of grains per head, grain oil percentage, oil yield and grain protein content were measured.
The results indicated that N fertilizer caused an extension of the growth period and means of days to physiological maturity. It also increased plant height, stem diameter and head diameter. While increasing plant density had an incremental effect on plant height, it negatively affected stem diameter and head diameter. N fertilizer up to 150 kg/ha increased the grain yield and biological yield, whereas higher levels of N fertilizer decreased both. Plant density of 85000 plants per hectare was observed as a suitable plant density, whereas the higher plant density had a negative effect on grain yield. N fertilizer via increasing the number of grains per head, and plant density via increasing the number of heads per unit area and also decreasing the number of grains per head influenced the grain yield. One-thousand grain weight was not affected by neither N fertilizer nor plant density. Considering the superiority of 150 kg/ha of N fertilizer and plant density of 85000 plants/ha for grain yield and oil yield, it appears that they could be recommended for producing desirable yield in the regions similar to the study region.
G. Saeidi,
Volume 7, Issue 3 (10-2003)
Abstract
In order to investigate agronomic traits and yield potential of edible-oil flax (Linum usitatissimum L.) as a second crop in Isfahan region, different genotypes were evaluated in separate experiments in early spring (April, 7) and summer (July, 16) planting dates, using a Randomized Complete Block Design with three replications. The experiments were conducted in agricultural research farm, Isfahan University of Technology in the year 2000. The results showed that summer planting considerably and significantly reduced number of seedlings per unit area, days to 50% flowering, and seed yield. However, maturity of the plants was delayed because of summer planting. According to overall average obtained for genotypes, seed yield was 1472 and 213 kg/ha in the first and second planting dates, respectively. There was a significant difference between genotypes for number of seedlings per unit area, days to 50% flowering and maturity in both planting dates. However, genotypes were significantly different for seed yield in the first planting date. Summer planting also non-significantly reduced yield/plant, capsules/plant and 100-seed weight and increased seeds/capsule. The differences between genotypes for these traits in both planting dates and for seeds/capsule in the first planting date were significant. The significant interaction between genotypes and planting dates on seeds/capsule and 100-seed weight was because of increasing or decreasing levels of these traits in some genotypes when planting date was delayed. The results of regression analysis, correlation coefficients and path analysis showed that in both planting dates, capsules/plant followed by seeds/capsule and 100-seed weight were the major components of yield/plant. Capsules/plant had the most (approximately 80%) contribution in variation of yield/plant in both planting dates. The number of plants per unit area affected yield/plant via indirect and negative effect of capsules/plant.
N. Dadashi, M. R. Khajehpour,
Volume 7, Issue 4 (1-2004)
Abstract
A field experiment was conducted in 2000 at the Agricultural Research Station, Isfahan University of Technology, to model the response of four safflower genotypes to day length and temperature changes under field conditions. Five planting dates (March 12, April 12, May 10, June 8, and July 12) and four safflower genotypes (Arak 2811, local variety Koseh, Nebraska 10 and Varamin 295) were evaluated using a randomized complete block design with split-plot layout in three replications. Date of planting was considered as the main plot and cultivars were randomized in the sub-plots. Number of days from planting (P) to emergence (E), stem elongation (SE) to head visible (HV), and HV to flowering initiation (FI) significantly reduced with delay in planting as the result of increase in temperature during these periods. Number of days from P to SE, duration of flowering (DF) and termination of flowering (TF) to physiological maturity (PM) were significantly affected by planting date and reduced as day length increased. The same was observed in the case of number of days from P to 50% flowering (MF) and to PM. Large co-variation of day length with temperature may explain a portion of day length contribution to the variation in the above periods. Varamin 295 was later than other genotypes with respect to the duration from P to HV, and specially, for rosette duration. In addition and for unknown reasons, the rate of development (RD) of Varamin 295 at all developmental periods could not be explained by day length and/or temperature variables. Among other genotypes, Koseh with 125 days, and Nebrska 10 with 118 days from P to PM were the latest and the earliest genotypes, respectively. The response of Koseh to planting dates, as measured by the duration of various developmental stages, differed from Arak 2811 and Nebraska 10. This was attributed to the probable response of Koseh to day length. RD of Koseh, Arak 2811, and Nebraska 10 during P to MF was explained by a linear regression and RD of Koseh during P to PM by a polynomial regression with day length by mean temperature as an independent variable. RD of Arak 2811 and Nebraska 10 during P to PM was explained by minimum temperature. It seems that partial sensitivity of Koseh to day length has a considerable significance in its adaptation to environmental conditions prevailing in the summer under Isfahan climatic conditions.
Y. Asri,
Volume 7, Issue 4 (1-2004)
Abstract
|
|
|
![AWT IMAGE]() |
Kavir Biosphere Reserve covers an area of 686598 hectares situated in the northwest of Dasht-e-Kavir and east of Daryach-e-Namak. The Biosphere Reserve presents a variety of habitats, including cliffs and rocky outcrops, piedmont plains, gravelly, deserts and sand dunes, saline plains and salt marshes, and seasonal rivers and springs. The main aim of this research is to identify the plant species and to introduce of the flora in Kavir biosphere reserve. For this purpose, plant samples were collected from different habitats of the area in three growing seasons between 1994-1999. The life forms of species were determined and the biological spectrum of the area was plotted. The position of the area concerning phytogeographical classification was studied based on geographical data and references. A total number of 359 species and subspecific taxa was identified. These include 3 gymnosperms, 312 dicotyledones and 44 monocotyledones. Altogether, 43 families and 224 genera are known from the area. The following families have the highest number of species: Chenopodiaceae, Asteraceae, Brassicaceae, Poaceae, Boraginaceae, and Fabaceae. Therophytes with 198 species (55.1%) are the most frequent life forms in the area. The distribution of 245 species (68.3%) is restricted to Irano-Turanian region. Of these, 30 species (12.2 %) are endemics of Iran. . |
A. Abbaspour, M. Kalbasi, H. Shariatmadari,
Volume 8, Issue 1 (4-2004)
Abstract
The possibility of using a steel plant by-product (converter sludge) as an iron fertilizer was investigated. This compound consists of 64% Fe oxides. Considerable amounts of elements such as Ca, Si, Mn, P, and K are also present in the sludge. To study the converter sludge, an incubation experiment was carried out on three calcareous soils. Treatments were 0, 4, and 8 percent of converter sludge mixed with soils plus mixtures of 4% converter sludge with elemental sulfur, thiobacillus inoculum and sulfuric acid. Soil samples (400 g) were kept at field capacity and room temperature in capped, aerated plastic containers for two months. Sub-samples were taken at 1, 10, 30, and 60 days of incubation and analyzed for Fe, Mn, Zn, P, and K contents as well as EC and pH.
Results showed that converter sludge increased significantly extractable Fe proportional to the rate of sludge used. Sulfuric acid application increased Fe availability significantly, but the availability of this nutrient generally decreased with the incubation time. Application of the sludge also increased the pH slightly at the beginning of incubation. Elemental sulfur and sulfuric acid application increased Fe and Mn availability significantly. Application of the sludge without and with elemental sulfur and sulfuric acid slightly increased availability of P. The results of this study revealed that converter sludge might be used as an iron fertilizer. However, further investigation in greenhouse and field experiments is needed.
M. Jalali Javaran, H. Hashemzadeh, A. Mousavi,
Volume 8, Issue 2 (7-2004)
Abstract
Analysis of transgenic plants is very important in gene transfer programs. In this research, the second generation (T1) of transgenic brassica napus which was transformed by antisense of Glutamine synthetase (GS) gene was studied from the view of total soluble protein content of leaf, total chlorophyll and protein patterns (SDS-PAGE) using seeds of Brassica napus .Protein concentration was determined by a calorimetric method described by Bradford method. Chlorophyll (a, b) and carotenoid contents were determined by spectrophotometry. The total soluble protein content of Brassica napus leaves increased from YG stage, reached a maximum level during MG2 and, after this, decreased with the progress of SS stage. Comparison of the total soluble protein between different treatments showed the highest level in the A2 plant and the least in the A6 plant. Comparisons with chlorophyll a and b were not significant between different treatments, but different stages showed significant differences with maximum and minimum levels obtained in the MG1 and SS, respectively. Protein patterns were also studied using SDS-PAGE method. No new band was recognized in the MG1 stage, but the density of some protein patterns was shown in YG and MG2 stages. In YG stage, differences were seen among the A5, A3, A4 and A6 with W.T on 41 KDa weighty position and also between the A1 and A2 with W.T treatment on 23/6 KDa. Considering the molecular weight GS1 subunit of glutamine synthetase (41 KDa) and the similar conditions in growth, protein extraction and macro molecular analysis in transgenic and control plants, we can tell that the difference shown in transgenic plants are probably due to the effect of the antisense of glutamine synthesis gene in this plant.
M. Hoodaji, A. Jalalian,
Volume 8, Issue 3 (10-2004)
Abstract
Soil pollution and accumulation of heavy metals in crops in industrial areas are the most important bioenvironmental problems that threaten the life of plants, animals and humans. The objective of this study was to determine Ni, Mn and Cd distribution in soil and crops shoots around the Mobarakeh Steel Plant. In this study, we separated 50 zones based on soil utility maps taking into consideration the dominant wind direction (south-western to north- eastern). In each zone, soil was sampled at 0-5, 5-10, 10-20 and 20-40 cm depths (200 samples) and DTPA-extractable concentrations of Ni, Mn and Cd were determined in soil samples. Also 36 plant samples from shoots of 18 main crops were collected in the region and the concentrations of heavy metals were determined in crop samples.
Results showed that maximum DTPA-extractable concentrations of Ni and Mn were in the northeast of the region in the 0-5 cm layer (4.2 and 312 mg/kg.soil, respectively) and decreased in 5-10,10-20 and 20-40 cm layers (2.7,2.7,2.1 and 200,212,146 mg/kg.soil, respectively). The concentrations of Ni and Cd in shoots of crops were undetectable with atomic absorption method. The concentration of Mn in rice shoots was 716.6 mg/kg.dry.m. It was higher than USEPA standards (15-100 mg/kg.dry.m).
.
N. Dadashi, M. R. Khajehpour,
Volume 8, Issue 3 (10-2004)
Abstract
Although safflower is known to be a cool-season crop, it is usually planted as a summer crop in Isfahan. Thus, an experiment was conducted in 2000 at the Agricultural Research Station, Isfahan University of Technology, to study the effects of date of planting on growth, yield components, and seed yield of safflower. Five planting dates (March 12, April 12, May 10, June 8, and July 12) and four safflower genotypes (Arak 2811, local variety Koseh, Nebraska 10, and Veramin 295) were evaluated using a randomized complete block design with split-plot layout in three replications. Date of planting was considered as the main plot and cultivars were randomized in sub-plots. Delay in planting from March 12 to may 10 reduced plant dry weight per unit area, number of heads per plant, number of seeds per head, seed yield per unit area, harvest index and petal yield. The above traits increased as planting was further delayed from May 10 to June 8. Highest seed oil and lowest seed protein contents were also obtained for this planting date. Plants of July 12 planting date did not reach physiological maturity. Among the genotypes evaluated and over planting dates, the highest and lowest number of heads per plant, 1000-seed weight, and seed yield were produced byArak 2811 and Veramin 295 (mean of the first and second planting dates), respectively. Highest seed yield (4512 kg ha
-1) was produced by local variety Koseh in June 8 planting date. It might be concluded that this variety has adapted to the summer planting conditions of Isfahan by natural selection.
A. A. Ehsanpour, R. Taheri,
Volume 9, Issue 1 (4-2005)
Abstract
In this research the effect of ethinyl estradiol on somatic embryogenesis of Medicago sativa was investigated. Seeds were grown in vitro on MS medium containing 2,4-D, Kin and NAA for callus induction. Plant regeneration media with 14 different combinations of auxin, cytokinin and ethinyl estradiol were provided. Three to four-week old celli and stem or hypocotyl segments of Medicago sativa were transferred to regeneration media. Results showed that ethinyl estradiol (l mg/L) induced shoot, root and somatic embryo on calli. When the stem and hypocotyl segments were cultured on medium M12, only shoots and roots were produced with no somatic embryo. Finally, it was observed that ethinyl stradiol and auxin together could induce somatic embryogenesis and plant regeneration, while these hormones had no effect separately.
M. Latifian, H. Seyedoleslami, J. Khajehali,
Volume 9, Issue 2 (7-2005)
Abstract
Some bioecological aspects of grape leafhopper, Arboridia kermanshah Dlabola, including: the egg distribution under the leaf surface, eggs and nymphs spatial distribution on the vine arms, the adult distribution on three strata of the vine canopy, the adult diel activities and the geographical distribution of this species in Isfahan province were studied. Samplings were done in the 1997. The egg distribution under the leaf surface was determined by repeated sampling during the season and the egg density was estimated on three regions such as the main and secondary vein, the leaf surface margins and others. Eggs and nymphs spatial distribution along the vine arms were studied weekly for six weeks by sampling an arm of five vines during the second generation, the leafhopper population was the highest. The adult spatial distribution on the vine canopy was determined by sampling three strata of the vine canopy using the D-vac apparatus. Diel activities were studied by sweeping nets fifty times per vineyard at the two hour intervals from 8 a.m. to 20 p.m. Temperature and the relative humidity were also measured in the shade once per hour. The presence and the abundance of this species in 87 vineyards in the different climatic conditions were studied by a sweeping net. The leaf margin and around of the secondary vein were preferred for the oviposition of the leafhopper. Adults, nymphs and eggs were more abundant in the middle strata of the vine canopy than others. The mean pattern of the daily activity of the adult indicated one peak at 8 a.m. and the other one at 20 p.m. Maximum temperature thereshold for the adult activities was 28º C. The study of the grape leafhopper distribution in isfahan province indicated that this species was distributed in the most vineyards, but was highly abundant in more humid conditions.
A. Azari, M.r. Khajehpour,
Volume 9, Issue 3 (10-2005)
Abstract
The appropriate planting pattern of safflower in summer planting might be different from the planting pattern suitable for spring planting, and this has not been determined under Isfahan environmental conditions. A field experiment was conducted in the summer of 2000 at the Agricultural Research Station, Isfahan University of Technology, using a randomized complete block design with a split plot layout and three replications. Main plots consisted of three row distances (30 cm flat and 45 and 60 cm on bed), and sub-plots included three planting densities (30, 40, and 50 plant m-2). The experiment was planted in June 13 using local safflower variety of Isfahan, named Koseh. Leaf area index, number of heads per branch, number of seeds per head, 1000-seed weight, seed yield per plant and harvest index were not significantly effected by row distance. Increase row distance significantly enhanced most developmental stages and increased number of branches per plant and per square meter, but significantly decreased number of heads per plant and per square meter and seed and petal yields. The highest seed and petal yields (3841 and 373 kg per ha, respectively) were obtained with 30 cm row distance. Plant density had no significant effect on number of branches per plant, number of seeds per head, 1000-seed weight and seed yield per plant and per unit area. Plant density significantly enhanced most developmental stages and increased leaf area index, number of branches and number of heads per square meter, but significantly decreased number of heads per branch and per plant, petal yield and harvest index. The highest seed yield without petal clipping (4341 kg per ha) was obtained with 30 cm row distance and 50 plants m-2 treatment. The results obtained in this experiment indicate that this planting pattern might be appropriate for summer planting of safflower under conditions similar to this experiment.
F. Momtazi, Y. Emam, N. A. Karimian,
Volume 9, Issue 3 (10-2005)
Abstract
The physiological characteristics of winter wheat(cv. Shiraz) were evaluated in a 2-yrs field study by using a spilit plot design with four replications, at the experimental farm of Shiraz University, College of Agriculture located at Badjgah. Main plots consisted of three sowing dates (November 6th, December 6th and January 5th) and four planting densities (150, 250, 350 and 450 plants/m2) were assigned as sub plots. The results indicated that delay in sowing was associated with a significant reduction in the grain yield. So that the grain yield in sowing date of January 5th was significantly less than it in sowing dates of November 6th and December 6th. Moreover with delay in sowing date the developmental rate of wheat was enhanced and plants reached maturity more rapidly. The trend of the leaf area index changes and the dry weight of the plants were under the effect of experimental treatments, leaf area index was found to be greater at the higher densities and early planting date. Number of stems per m2 were decreased with delay in the sowing date, although at the higher densities, the number of stems per m2 was greater, despite severe tiller death observed at these densities. The study of trend of dry weight changes during the season indicated that biomass was greater at higher densities and earlier sowings, which resulted in earlier ground cover and higher amount of radiation interception. In conclusion, the results of the present investigation revealed that to achieve a reasonable grain yield, the 6th of December and 250 plants per m2 were the best sowing date and planting density for wheat (cv. Shiraz) under similar agro climatic conditions with the present investigation.
M. Azimee, M. Mesdaghi, M. Farahpour,
Volume 9, Issue 3 (10-2005)
Abstract
Due to the feeding on prickly shrub of Astragalus adscendes by an insect (Cyamophila dicora Loginva), a kind of the manna named Gaz-angubin is produced which it’s harvesting has a long history in Isfahan province. This manna is exclusively produced in Isfahan, Iran. In this research, a map of spatial distribution of this prickly shrub was provided. By random-systematic sample of line transects, biological criteria such as insect density, canopy coverage, branch and the soil moisture were measured. Multiple linear regression and nested design were used to analyses the response and predictor variables. The results indicated that the prickly shrub of Astragalus adscendens occupied the wet parts of mountainous areas of Isfahan and density of insect is highly related to the age, canopy coverage and soil moisture. By increasing the age of prickly shrub, the densities of insect are also increased. Regression analysis showed that the age of plant are more important in two areas of Kloseh and Lashokhm, while in Dareh-sibe area, soil moisture and the moisture of branches are more important. In other words, when the moisture is enough (e.g. Kloseh and Lashokhm areas), the age of plant has the paramount effects on insect density but when the area was suffered from drought, branches and soil moisture are more important.
M. Aghaalikhani, A. Ghalavand, A. Ala,
Volume 9, Issue 4 (1-2006)
Abstract
In order to evaluate the effects of plant densities (10, 13, 20 and 40 plant/m2 ) on the yield and yield components of two cultivars (Partow, Gohar) and a line (VC-1973A) of mungbean [Vigna radiata (L.) Wilczek] a field experiment was conducted at the Seed and Plant Improvement Institute (SPII) of Karaj in Summer 1998. This research carried out in a factorial experiment based on Randomized Complete Block Design (RCBD) with 4 replications. The results indicated that VC-1973A line had the highest grain yield. This line has superiority to other cultivars, due to the early and uniformity of seed maturity and easy mechanized harvest. Plant density has a significant effect (p<0.01) on the grain yield, in such a way that the densities of 20 and 10 plant/m2 outyielded the highest (2221 kg/ha) and lowest (1650 kg/ha) grain yield respectively. Among the yield components, only the number of pods per plant indicated a significant difference due to the plant density. Correlation coefficient between attributes indicated that the plant height and height of first pod internode had a positive correlation with the plant density, while the correlation of the plant density with harvest index (HI), branch number and pod number per plant was negative. More over it seems that the pod number per plant is the most important components of mungbean’s yield, because it has a high (r = 0.88) and significant (p<0.01) correlation with the grain yield.
Gh. Khajouei Nejad, H. Kazemi, H. Alyari, A. Javanshir, M. J. Arvin,
Volume 9, Issue 4 (1-2006)
Abstract
This study was conducted to evaluate the effects of four levels of irrigation (irrigation of plants after I1 = 40, I2 =60, I3 = 80 , and I4 = 100mm of evaporation from class A pan) and four plant densities(D1 = 30, D2 = 40, D3 = 50 and D4 = 60 plants/m2) on the seed yield and seed quality in three soybean cultivars(V1=Hobit, V2=Williams and V3=Hill) in a split factorial design, based on the completely randomized blocks, with three replication for two years(2001 and 2002). The Irrigation treatments were assigned to the main plots, and the plant densities and cultivars to the sub plots. Results indicated that soybean seed yield was influenced by the different irrigation and plant density levels in the both years. Irrigation levels I2 produced the highest and I4 the lowest seed yield. It was also revealed that the plant density D3 produced the highest and D1 the lowest seed yields. Among the cultivars under investigation, V2 produced the highest and V3 the lowest seed yield . Seed oil and its protein contents both were affected significantly by the irrigation levels, plant densities and cultivars in both years. The plants receiving I1 treatment had the highest and those having I4, the lowest percentages of seed oil. Changes in the plant densities also affected seed oil and protein content. The plant density of D1 caused the seeds to have the highest oil and lowest protein percentages. However, D4 decreased oil and increased protein percentages. The highest water use efficiency was obtained from I3 and that of the lowest value from I1. The results also indicated that D4 had the highest and D1 the lowest water use efficiencies. Therefore, it could be concluded that the water use efficiency can be increased by increasing the plant density per unit area. The highest efficiency for biological and grain yield belonged to V2 and V1 respectively where as the lowest efficiency for those two mentioned characters belonged to V1 and V3, respectively. However, the treatment I2V2D2 is recommended for higer the seed yield production per unit area.
F A. Frouzandeh Shahraky, M. R. Khajehpour,
Volume 9, Issue 4 (1-2006)
Abstract
Under irrigation and in double-cropping system, a large amount of plant residue remains after harvest that along with the limited time for residue decomposition and complete seedbed preparation, necessitates reduced tillage and special residue management. In the present study, the effects of various seedbed preparation methods on vegetative growth, yield components and seed and oil yields of sunflower (Euroflor hybrid) were studied in a barley-sunflower cropping system during 2001 at the Agricultural Research Station, Isfahan University of Technology. Three residue management treatments (standing, partly removed and burned) along with five tillage systems (moldboard + disk chisel + disk disk moldboard and furrower as the minimum tillage) were laid out in a split-block design with three replications. Burning residue treatment significantly increased plant dry weight at various developmental stages and also head diameter. Number of seeds per head, 1000 seed weight, harvest index, and oil yield were non-significantly higher in the burned residue treatment. Seed yield was significantly higher in the burned and partly removed residue treatments. Moldboard + disk and chisel + disk treatments significantly produced higher plant dry weight at various developmental stages, head diameter and seed yield. Number of seeds per head, 1000 seed weight, harvest index, and oil yield were non-significantly higher in these treatments. Minimum tillage ranked the lowest for these traits. The results of this experiment indicate that chisel + disk treatment with the partly removed residues might be an appropriate seedbed preparation method in a barley-sunflower double planting under conditions similar to this experiment.
A. Majnooni-Heris, Sh. Zand-Parsa, A. R. Sepaskhah, A. A. Kamgar-Haghighi,
Volume 10, Issue 3 (10-2006)
Abstract
Agricultural investigations use computer models for simulation of crop growth and field water management. By using these models, the effects of plant growth parameters on crop yields are simulated, hence, the experimental costs are reduced. In this paper, the model of MSM (Maize Simulation Model) was calibrated and validated for the prediction of maize forage production at Agricultural College, Shiraz University in 1382 and 1383 by using maize forage yield under furrow irrigation with four irrigation and three nitrogen treatments. Irrigation treatments were I4, I3, I2, and I1, with the depth of water 20% greater than, equal to, 20% and 40% less than potential crop water requirements, respectively. Nitrogen treatments were N3, N2, and N1, with the application of N as urea equal to 300, 150, and 0 kg N ha-1, respectively. After calibration and validation of MSM, it was used to estimate suitable planting dates, forage yield and net requirement of water discharge for planting at different dates. The results indicated that the net requirement of water discharge was reduced by gradual planting at different planting dates. By considering different planting dates for maize, from Ordibehest 20th to Tir 10th, the planting area might be increased 17.9%, compared with single planting date on Ordibehesht 30th under a given farm water discharge and full irrigation.
H. R. Bagheri, G. Saeidi, P. Ehsanzadeh,
Volume 10, Issue 3 (10-2006)
Abstract
Safflower (Carthamus tinctorius L.) is an oilseed crop and can have a considerable contribution to vegetable oil production in the country, since it has a high adaptability to different environmental conditions. This crop is grown in summer time as a second crop in Isfahan province. Therefore, this study was carried out to investigate the agronomic characteristics of the safflower breeding lines which were isolated from local populations of Iran in early spring and summer planting dates. Seven genotypes were evaluated at two planting dates, early spring (16 March) and summer (21 June), using a randomized complete block design (RCBD) with 4 replications at the research farm of Isfahan University of Technology. The results showed that the number of days to emergence, days to flowering and maturity and plant height decreased considerably in the summer planting date. However, the harvest index, seed yield per plant and seed yield per plot and oil yield increased in this planting date. Yield components were not significantly different in the two planting dates, except that 100-seed weight was significantly and considerably more in the second planting date. The average seed yield of genotypes was 2498 and 2845 kg/ha in spring and summer planting dates, respectively. In the first planting date, seed yield varied from 1876 Kg/ha, (for Kouseh genotype as check variety) to 2908 Kg/ha for E2428 line (selected from Isfshan population). In the second planting date, seed yield had a variation of 2124 to 3186 Kg/ha for the genotypes of S3110 (selected line from Khorasan population) and C111 (selected from Kouseh population), respectively. In the second planting date the check variety (Kouseh population) had a seed yield of 2965 Kg/ha. In both first and second planting dates, genotypes of E2428 and C116 (selected line from Kouseh population) had the maximum oil content in the seed, (33.9% and 32.3%د respectively). Genotype by planting date interaction was significant for seed yield and oil yield, since late planting date reduced seed yield in genotypes of S3110 and E2428, but it increased these traits in other genotypes.