Search published articles


Showing 90 results for Plant

M. Aalipour Shehni, A. Farrokhian Firouzi, H. Motamedi, A. Koraei,
Volume 19, Issue 71 (6-2015)
Abstract

Macrospore created by decaying plant root provides pathways for rapid transport of pollutants in soil profile. The main objective of this study was quantitative analysis of the effect of plant root (Zea mays L.) on bacterial and chloride transport through soil. Experiments were conducted in 9 soil columns packed uniformly with loamy sand. The treatments were bare soil, bare soil with corn (Zea mays L.) root and bare soil after decaying the corn root. The Breakthrough curves of Chloride were measured. Breakthrough curve (BTCs) of Escherichia coli and chloride were measured, too. The HYDRUS-1D one and two site kinetic attachment–detachment models were used to fit and forecast transport and retention of bacteria in soil columns experiment. The results indicated that the difference between soil hydraulic properties (saturated hydraulic conductivity and flow velocity) of the treatment was significant (p < 0.05). The result also showed that the two-site kinetic model leads to better prediction of breakthrough curves and bacteria retention in the soil in comparison with one-site kinetic model. Interaction with kinetic site 1 was characterized by relatively fast attachment and slow detachment, whereas attachment to and detachment from kinetic site 2 was fast. Most of the cells showed retention close to the soil column inlet, and the rate of deposition decreased with depth. Low reduction rate of bacteria of the soil columns with plant root and with void root channel indicated the presence of macrospores in the soil created by deep corn root system.


T. Raiesi, A. Hosseinpur,
Volume 19, Issue 71 (6-2015)
Abstract

The ability of different soil tests in predicting soil phosphorus (P) is important in soils amended with municipal sewage sludge. The objective of the present study was to evaluate several chemical extractants to estimate available P for bean growing in 10 calcareous soils amended with municipal sewage sludge from Chaharmahal-Va-Bakhtiari province under the greenhouse conditions. For this purpose, the soil samples were incubated with sludge at a rate of 39-ton sludge ha–1. The amount of available P of the soil samples was determined by Olsen, Colwell, ammonium bicarbonate-DTPA, 0.01 M calcium chloride, BrayІ, ІІ, Mehlich І and ІІ methods. A pot experiment in a completely randomized design was conducted to evaluate the bean plant indices. The results showed that the amount of extractable P with the above methods decreased in the following order: Colwell> Bray ІІ> Mehlich ІІ> Olsen> Ammonium bicarbonate DTPA> Mehlich І> Bray І> 0.01M chloride calcium. The extractable P with 0.01M chloride calcium, Mehlich І, ІІ Colwell and Olsen methods correlated significantly with plant indices (P concentration and P uptake). Thus, mentioned methods could be used to estimate plant-available P in the soils amended with sewage sludge.


S. Heydari, S. Oustan, M.r. Neyshabouri, A. Reyhanitabar,
Volume 19, Issue 72 (8-2015)
Abstract

Consequences of heavy metal accumulation in soils are of great concern. One way of decontaminating heavy metals from soils is using chelating agents, particularly EDTA. In this research, three contaminated soils (with total concentration of these metals of 10.5, 55.8 and 80.6 mmol kg-1) were collected from the surface layer of the lands surrounding a zinc-lead smelting plant in Zanjan province. The extent of Zn, Pb and Cd release by Na2H2EDTA (100 mmol kg-1 of dry soil) from these soils in column leaching experiments (both continuous and pulse addition methods) assembled into half of saturated hydraulic conductivity was assessed. In preliminary experiments, the leaching was stopped due to a drop in hydraulic conductivity. Therefore, the continuous addition method was performed with calcium nitrate as the background solution and the pulse addition method was conducted using this background solution coupled with pH adjustment to 8. Based on the results, the percentage removal of Cd as well as Pb was relatively the same for the two addition methods while the removal of Zn was 13% on average higher in the continuous addition method than in the pulse addition method. For both methods, the removal efficiencies followed the order of complex stability constants (as Pb>Zn>Cd) in a limited concentration range of EDTA to complex heavy metals. Furthermore, in contrast to Cd and Pb, a direct linear relationship was found between the percentage removal of Pb and its total amount in the soils. Surprisingly, the Pb concentration was on average only about one-twentieth of the Zn concentration. The breakthrough curves of both methods showed the mobility order of Cd>Zn>Pb. In general, it seems that the removal pattern of soil heavy metals is dependent not only on the soil type but also on the removal method.


H. R. Eshghizadeh, M. Kafi, A. Nezami, A. H. Khoshgoftarmanesh, M. Karami,
Volume 19, Issue 73 (11-2015)
Abstract

This study was conducted to determine some mineral content concentrations in soils and plants of three elevation classes (1500, 2200 and 3000m) and two phenological stages of flowering and seedling in north facing slopes of Sabalan rangelands. Soil samples from the depth of 20cm and plant samples using 1×1m plots with 10 replications were collected. After sample preparation, the concentrations of minerals such as calcium, phosphorous, sodium, potassium, ion, copper, zinc and magnesium were determined using spectrophotometer and flame photometer. Data was analyzed by SAS9.1 software using a Completely Randomized Design with a Generalized Linear Model procedure. Results showed that elevation had a significant effect on Ca, Fe, Cu, Zn and Mn of soil and P, Na, K, Mg and Mn of plants in the study areas (P&le0.05). Growing stages had a significant effect on all elements of plants except Ca (P&le0.05). Moreover, results showed that in three elevation classes the high demand minerals' concentrations were higher at the starting seedling stage in comparison with the flowering stage. In contrast, the low demand minerals' concentrations in three elevation sites were higher in the flowering stage in comparison with seedling stage. Interaction effect of elevation and growing stage was also significant in relation to all elements except Ca (P&le0.05).


R. Valizadeh Yonjalli, F. Mirzaei Aghjehgheshlagh, A. Ghorbani,
Volume 19, Issue 73 (11-2015)
Abstract

This study was conducted to determine some mineral content concentration in soil and plant of three elevation classes (1500, 2200 and 3000m) and two phenological stages of flowering and seedling start in north-facing slopes of Sabalan rangelands. Soil samples from the depth of 20cm and plant samples using 1×1m plots with 10 replications were collected. After sample preparation, the concentrations of minerals such as calcium, phosphorous, sodium, potassium, ion, copper, zinc and magnesium were determined using spectrophotometer and flame photometer. Data was analyzed by SAS9.1 software using Completely Randomized Design with a Generalized Linear Model procedure. Results showed that elevation had a significant effect on Ca, Fe, Cu, Zn and Mn of soil and P, Na, K, Mg and Mn of plants in the study areas (P&le0.05). Growing stages had a significant effect on all elements of plants except Ca (P&le0.05). Moreover, results showed that in three elevation classes the high demand minerals’ concentration was higher at the starting seedling stage in comparison with the flowering stage. In contrast, the low demand minerals’ concentration in three elevation sites was higher in the flowering stage in comparison with seedling stage. Interaction effect of elevation and growing stage was also significant in relation to all elements except Ca (P&le0.05).


A. Haghshenas-Adarmanabadi, M. Heidarpour, S. Tarkesh-Esfahani,
Volume 20, Issue 77 (11-2016)
Abstract

In this paper, the efficiency of four hybrid horizontal-vertical subsurface constructed wetlands which have been built for the tertiary treatment of Isfahan North Wastewater Treatment Facility and removal of organic matters was evaluated. In these constructed wetlands three plants including Phragmites australis, Typha latifolia and Arundo donax were planted and one unit left unplanted. The results of 12 months of sampling showed that the type of vegetation has no significant influence on the organic matter removal in the subsurface constructed wetlands, although the removal efficiencies in the planted constructed wetlands were more than unplanted control one. The COD and BOD5 removal efficiency in the constructed wetlands changes between 77% to 83% and 84% to 86%, respectively, during the operation period. The results of this research also showed that the organic matter removal was dependent on the influent organics nature and biodegradability. The first order model constants were calibrated in different wetlands for designing main projects. The organic concentration in the wetland effluents met the Iranian regulation limits for different reuse applications that shows the constructed wetland is a suitable technology for wastewater treatment in Iran.


K. Asgari, S. H. Tabatabaei, P. Najafi, Sh. Kiani,
Volume 20, Issue 78 (1-2017)
Abstract

Constant use of treated wastewater (TWW) for irrigation over long periods may cause buildup of heavy metals up to toxic levels for plants, animals, and entails environmental hazards in different aspects. The aim of this study was to assess the effect of using a deep emitter installation on lowering the potential heavy metal accumulation in soil and wheat grain, and health risk under drip irrigation with treated municipal wastewater. A field experiment was conducted according to a split block design with two treatments (fresh and wastewater) and three sub treatments (0, 15 and 30 cm depth of emitters) in four replicates in Esfahan, Iran. Soil samples were collected before planting (initial value) and after harvesting (final value) in each year. Elemental concentrations (Cu, Zn, Cd, Pb, Cr, and Ni) in soil and grain were determined using an atomic absorption spectrophotometer. A pollution load index (PLI) showed that there was not substantial buildup of heavy metals in the wastewater-irrigated soils compared to the freshwater-irrigated soils. Cu, Pb, Cr and Zn concentrations in wheat grain were within permissible EPA limits, but concentrations of Cr was above the safe limits of EPA. In addition, concentrations of Ni in wheat grain were several folds higher than EPA standards. A health risk index (HRI) which is usually adopted to assess the health risk to hazard materials in foods showed values higher than 1 for Cd and Cu, whereas children might also be exposed to health risk of Cd, Cu and Cr. Based on aforementioned results, it can be concluded that the depth of emitter in drip irrigation does not play a significant role in the accumulation of heavy metals from TWW in our sandy loam soil.


R. Amirnia, J. Jalilian, E. Gholinezhad, S. Abaszadeh,
Volume 21, Issue 4 (2-2018)
Abstract

To evaluate the effect of supplemental irrigation and seed priming on yield and some quantity and quality characteristics of vetch (Vicia dasycarpa) rainfed maragheh cultivar, an experiment was carried out at the Research Farm of Faculty of Agriculture, University of Urmia, West Azarbaijan province, Iran, during 2011. The experiment was laid out using split-plot, based on Randomized Complete Block design in three replicates. The factors studied were: Supplemental irrigation at four levels: without supplemental irrigation (I1), 1 time of supplemental irrigation (I2), 2 times of supplemental irrigation (I3) and 3 times of supplemental irrigation (I3). The subplot included four levels of seed priming: Control (C), Water (W), Phosphate (P) and Nitroxin (N). Plant height, pod number in stems, 1000-grain weight, wet and dry forage yield in the second and third harvest and fiber percentage in the second and third harvest, protein yield in the second and third harvest, biological yield and harvest index were influenced by the supplemental irrigation. Wet and dry forage yield in the second harvest and wet forage yield in the third harvest were highest in I4 with respectively 14.5, 16.72 and 3.56 (tons/hectare) yield and lowest with respectively 7.73, 7.47 and 2.06 (tons/hectare) yield. As a result, applying 2 times of supplemental irrigation and seed treatment with phosphate and nitroxin had positive effects on quality and quantity yield of vetch and they could improve the quantity and quality of Vetch forage.
 


Y. Choopan, A. Khashei Siuki, A. Shahidi,
Volume 21, Issue 4 (2-2018)
Abstract

Limited water resource in arid and semi-arid areas is one of the most important problems in the agricultural sector. Therefore, the use of non-conventional water resources becomes more important. For this reason, a study was conducted on barley to evaluate the effect of irrigation with sugar plant wastewater as a factorial randomized complete block design field experiment. Treatments include water well I1, wastewater I2, combined water and wastewater I3 (the ratio of seven to one, according to local practice) in two levels of without water stress S1 and  %75 water stress S2 and treatment I1S1 was considered as control. The results showed changes in surface tension of %1 had a statistically significant effect on plant height, grain yield and root length. As well changes of irrigation water in the level of %1 had a statistically significant effect on plant height, grain protein yield and root length. Maximum grain yield was obtained in treatment I1S1 with the weight of 4034 kg per hectare and lowest grain yield was obtained in treatment I2S2 with the weight of 1564 kg per hectare. The lowest and highest percentages of protein content were observed in treatment I1S1 for 12.37% and treatment I2S2 for 13.47%, respectively. The plant height showed the highest amount in control treatment, i.e. 82.87 Cm.

M. H. Rasouli0-Sadaghiani, H. Khodaverdiloo, M. Barin, S. Kazemalilou,
Volume 22, Issue 1 (6-2018)
Abstract

The use of plants and soil microorganisms is a promising technique for the phytoremediation of heavy metal-contaminated soils. This study was carried out in order to evaluate the soil microbial potential with four Cd concentration levels (0, 10, 30 and 100 mg kg-1); the study also addressed the inoculation of arbuscular mycorrhizal fungi (AMF) species (a mixture of Glomus species including G. intraradices, G. mosseae and G. fasciculatum) as well as plant growth promoting rhizobacteria (PGPR) (a mixture of Pseudomonas species including P. putida, P. fluorescens, and P. aeruginosa) with the Centaurea cyanus plant. The soil sample was spiked uniformly with Cd nitrate salt to create different Cd concentrations. The contaminated soils were then sterilized and subsequently inoculated with AMF and PGPR. The results indicated that with increasing the soil Cd concentration, colonization percent, abundance of rhizobateria, shoot biomass, and shoot relative biomass were significantly decreased, while the  proline content and the shoot Cd concentration were significantly increased (P≤0.05). The mean of Cd extracted in AMF and PGPR treatments was 1.8 and 2.8 and the translocation factor was 1.2 and 1.5 times higher, as compared to the corresponding control treatments, respectively. It could be concluded that microbial inoculation, in addition to improving plant growth, plays an important role in the Cd phytoremediation efficiency by plant.

H. Shekofteh, A. Masoudi, S. Shafie,
Volume 22, Issue 3 (11-2018)
Abstract

Soil quality is the permanent soil ability to function as a live system within ecosystem under different land uses. Investigating the impact of land use type on soil quality indicators could help to distinguish sustainable managements and therefore, to inhibit soil degradation. In order to evaluate the effect of different land uses on soil quality indicators, a research based on a randomized complete design in Rabor region, Kerman Province, Iran, was conducted. A total of 104 samples were taken from the soil surface (0-15 cm) of four land uses including: pasture (28 samples), forest (25 samples), agronomy (27 samples) and garden land use (24 samples). Soil quality indicators were measured as: soil organic matter, particulate organic matter, and bulk density, plant available water capacity, S index, cation exchange capacity (CEC), electrical conductivity (EC), soil pH, and phosphatase enzyme. According to the results, land use types had a significant effect on all indicators except S index at 1% probability level. The maximum amount of soil pH, bulk density and phosphatase enzyme was obtained from forest land use. On the other hand, the maximum amount of the other indicators was attained from the garden land use. Totally, garden land use, due to having high organic matter, could improve the soil quality. However, the pasture land use had the worst soil quality due to the weak cover and the low organic matter.

M. Habibian, S. Jafari, M. Sheklabadi,
Volume 23, Issue 1 (6-2019)
Abstract

Sugarcane is cultivated in the wide area in Khuzestan province. In these areas, irrigated sugarcane cultivation consumes more than 30,000 cubic meters per hectare annually. This research was carried out to determine the effect of sugarcane cultivation on the soil development process and forms of iron oxides. Different sugarcane fields with different utilization times were selected and soil physico-chemical properties and different Fe forms were measured. The results showed that with enhancing the utilization time, the total amount of total iron oxides (Fed) and crystalline iron oxides (Fed-Feo) was increased. The average value of the Fed from 6958 mg/kg in the fields with a medium utilization history was decreased to 4560 mg/kg in fields with a short utilization history. Similarly, the average amount of crystalline iron oxide from 5888.3 mg/kg in the fields with a long utilization history was decreased to 5003.9 mg/kg in the fields with a short utilization hostory. This increase reflected the effect of sugarcane cultivation on the soil development process in the cultivated fields. The amount of non-crystalline iron oxides (Feo) was decreased from 443.9 mg/kg from the soil surface to 273.8 mg/kg to the subsurface. This increase was related to the more organic matter and the microbial activity in the surface soil. The amount of active iron (Feo/Fed) was dropped in all fields after the cultivation. Also, this ratio was dropped from 0.055 in the fields with a long cultivation history to 0.064 in the fields with a short utilized field. The results, therefore, showed that the increase of crystalline iron oxides was due to sugarcane and its heavy irrigation.

S. Jamali, F. Sajadi,
Volume 23, Issue 1 (6-2019)
Abstract

Due to the limited freshwater, farmers have to use exotic waters such as seawater. One of the management methods is the conjunction use of fresh and seawater. The goal of this study was to investigate the effect of conjunctive irrigation with seawater and fresh water on the yield and yield components of Dill (Anethum graveolens L.) in greenhouse conditions. The research was done based on a completely randomized design including 3 replications as pot planting in Gorgan University of Agricultural Sciences and Natural Resources during 2016. In this study, there were five irrigation regimes (Irrigation with one-third of the sea water with tsp water, Irrigation with half seawater and then one more half with fresh water, Alternate irrigation with seawater and tap water, and Conjunction irrigation). The results inducted that the effect of different irrigation regimes on Umbrellas per plant, umbels per umbrellas and thousand kernel weights was highly significant (P<0.01), but the number of leaves per plant, branches number, the number of seeds per plant, and the seed number in umbrellas were significant at 5 percent level (P<0.05). In this study, all parameters were decreased significantly with the increase at all levels of water salinity. The results showed that one-third seawater and tap water irrigation regime, as compared to other regimes after control regimes, had the highest Umbrellas per plant, umbels per umbrellas, the number of leaves per plant, branches number, the number of seeds per plant, and the seed number in umbrellas. One-third, half alternate, alternate and the mixture of sea water and tap water resulted in the decrease of thousand kernel weights, reaching ti 13.6, 19.0, 30.1 and 65.1 percent, respectively.

H. Ghamarnia, Z. Jalili, D. Kahrizy,
Volume 23, Issue 3 (12-2019)
Abstract

Exactly estimating of water requirement is essential for water balance studies, design and management of irrigation systems and water resources management. Because of limited soil and water resources in Iran, for optimal use of water resources in the agricultural sector, it is necessary to determine the amount of water requirement by different plants in different climatological conditions. In order to determine the water requirement and crop coefficients of Stevia, six lysimeter numbers were used in three replications for stevia and reference plant (grass). The reference Stevia plant evapotranspiration was measured on a daily basis. The results showed that during the 537 day period of Stevia cultivation, the maximum and minimum water requirement in the first and second year of cultivation was respectively 9.85 and 1.69 mm per day, and for the reference plant was obtained as 6.54 and 1.84 mm per day. In this study, the Kc coefficients in initial, development, intermediate and final stages of growth in 2016 were 0.76, 1.11, 1.46 and 1.05 and in 2017 at growth stages, were 0.76, 1.18, 1.52 and 1.29 respectively. The average of individual Stevia plant growth factors for four growth stages in two years of research was obtained as 0.76, 1.15, 1.49, and 1.17, respectively.

M. Askari, A. A. Kamgar-Haghighi, A. R. Sepaskhah, F. Razzaghi, M. Rakhshandehroo,
Volume 24, Issue 3 (11-2020)
Abstract

In the present study, the effects of different levels of irrigation, organic mulch and planting method on the mungbean yield in Badjgah were investigated. The experimental plan in the first year was full randomized block, while in the second year, it was full randomized split-split plot block design, in three repetitions. The results showed that in the FI treatments, the yield was increased up to 2% for the first year and 5% for the second year by changing the planting method from on over-ridge planting method to the in-furrow planting one. Also, the results of the first year showed that there was no significant difference between the yield in the fully-irrigated treatments without mulch and the treatment with mulch and 0.75 FI. The amount of the irrigation water could be decreased up to 25% by adding organic mulch in both planting methods, as compared to the fully-irrigated treatments without mulch. The maximum water productivity equal to 0.4 kg/m3 was observed in 0.5 FI, in-furrow planting method with mulch treatment. It can be, therefore, concluded that the water productivity may be maximized with the application of both deficit irrigation and mulching strategies.

O. Asadi Asadabad, S. H. Matinkhah, Z. Jafari, H. Karim Mojeni,
Volume 25, Issue 1 (5-2021)
Abstract

In order to investigate the effect of the type drip of irrigation methods, subsurface irrigation and furrow irrigation on the domestication of Hedysarum criniferum Boiss., an experiment with a  randomized complete block design with three replications was implemented  at Isfahan University of Technology for two years (2016 to 2018) . For this purpose, clay pipes were made and the plant was cultivated on the sides of clay pipes and types. Also, furrow irrigation treatment was applied as the control. During the experiment, all treatments received the same water and finally, some growth parameters were measured. The results of the study showed improvement in height (0.43 and 0.34), canopy cover (0.66 and 0.52), stem number (0.44 and 0.85), chlorophyll index (0.45 and 0.45), seed emergence (0.75 and 0.30), plant survival (0.78 and 0.55), yield (0.23 and 0.35), and water use efficiency (0.25 and 0.25) under type drip irrigation treatment, as compared to subsurface and furrow irrigation, respectively (P<0.05). In general, the type drip treatment is recommended in the early years of planting; however, since the maximum production potential of this plant is in the third year onwards, it is necessary to examine the results in the following years to recommend the proper irrigation method, especially the use of subsurface irrigation. 

A. Motamedi, J. Abedi-Koupai, A.r. Gohari,
Volume 26, Issue 2 (9-2022)
Abstract

Water scarcity and lack of soil fertility are two major problems in the agriculture sector. This study aimed to use Azolla anzali and Lemna minor as a cover for a free surface of the water since not only do they have the potential to reduce evaporation, but they can also produce green fertilizer. Therefore, a completely randomized design experiment with 4 treatments (Azolla anzali, Lemna minor, combination of Azolla anzali+ Lemna minor and control) was performed with three replications. The surface of the reservoirs was covered with the mentioned plants and the changes in water height were measured every other day and the amount of nutrients (nitrogen and phosphorus) of the plant tissue was measured three times at the beginning, middle, and end of the period. Eventually, water loss in tanks containing Lemna, Azolla, and Lemna+ Azolla, was 39, 33.2, and 28.7% less than the control tank. The highest amount of nutrients in plant tissue was observed in Lemna, Azolla+ Lemna, and Azolla treatments, respectively. Although the amount of nutrients in the combined treatment was not higher than that of Lemna more biomass was produced, which means it can provide more fertilizer. Finally, the combined treatment of the two plants is a more suitable option to be used.

S. Najmi, M. Navabian, M. Esmaeili Varaki,
Volume 27, Issue 3 (12-2023)
Abstract

The increasing need for water resources and controlling the discharge of wastewater into the environment shows the necessity of wastewater treatment. Green methods such as constructed wetlands and phytoremediation use biological processes in the environment for wastewater treatment. Considering the effect of cultivated constructed wetland performance from wastewater quality and climatic factors, the objective of this study was to evaluate the performance of hybrid and subsurface vertical and horizontal wetlands to improve the biological and chemical oxygen demand of the wastewater treatment plant in Rasht City. The effect of Phragmites australis and Typha latifolia plants on the treatment performance was investigated. Wastewater retention time in wetlands varies from monthly in winter and weekly in spring and summer. The results showed that the performance of wetlands in reducing biological oxygen demand (BOD) was more than chemical oxygen demand (COD). Plants improved the performance of the wetland by more than 50%, but no significant difference was observed between the performances of the two plants. The arrangement of the plant's cultivation was not effective in the amount of biological and chemical oxygen removal. The hybrid wetland was able to improve the wastewater quality twice as much as the vertical wetland. Comparing the concentration of the effluents from the wetlands with the standards showed that the effluents from the hybrid wetlands could only be used for agricultural consumption.

M. Baki, J. Abedi Koupai,
Volume 28, Issue 1 (5-2024)
Abstract

The improvement of water consumption efficiency is very significant, especially in arid and semi-arid regions. In this research, the effects of three hydrogel rates (0, 10, and 50 Mg ha-1) and three irrigation regimes (50%, 70%, and 100% of water requirement) on growth, yield, and oil production of Thymus daenensis were studied in a lysimetric experiment. The process of hydrogel synthesis was performed with sodium alginate as the main bone of the polymer and acrylic acid and acrylamide as monomers with the rapeseed meal biochar was made at 300 ºC. The results showed that the essential oil content produced by the plant was impressed by the hydrogel application. The essential oil content increased with an increase in water deficit, but the essential oil yield decreased in the lysimeters with water deficit compared to the ones without water stress. Besides, the application of 50 Mg ha-1 hydrogel caused a 17% increase in the dry matter and a 12% increase in the plant's height. According to the results of this experiment, the application of hydrogel caused the improvement in most characteristics of the Thymus daenensis in water stress conditions.

M. Barahimi, A.r. Sehhat, H. Kavand, S. Parvizi,
Volume 28, Issue 3 (10-2024)
Abstract

Today, many countries, including Iran, face natural hazards such as ground subsidence, drought, floods, and acute water shortage. Lack of correct management of underground water resources leads to many of these natural hazards. Artificial recharge of aquifers is one of the solutions proposed in the world to deal with these natural hazards, especially ground subsidence. The quantitative and qualitative effects of the effluent treatment plant on the Damaneh Daran Aquifer recharge were investigated in this research. The results showed that aquifer recharge through the distribution of effluents in the Damaneh Daran River has a positive effect on increasing the water level and releasing effluents in the river will enhance the water level in a larger radius regardless of the quality of the effluents. Based on the result of the present study, it is suggested that all the effluent treatment plants be allocated to aquifer balancing in the future. In the part of replacing wastewater with active wells, due to the lack of wells with industrial and green area use in this region, provided advanced wastewater treatment, all wastewater should be replaced with active wells in the agricultural area.


Page 4 from 5     

© 2025 CC BY-NC 4.0 | Journal of Water and Soil Science

Designed & Developed by: Yektaweb