Search published articles


Showing 21 results for Bacteria

S. M. Taghavi, K. Keshavarz,
Volume 6, Issue 4 (1-2003)
Abstract

During the period from 1997 to 1998, samples of wheat leaves were collected from different wheat farms in Fars and Kohgiluyeh & Boyrahmad provinces to identify the causal agent of wheat leaf blight. On the basis of LOPAT tests and production of fluorescent pigment on KB medium, 181 bacterial isolates were recovered from the samples. Based on biochemical, physiological and pathogenicity tests, the isolates were categorized in five groups. One group was found to be Pseudomonas fluorescens (Pf) and the remaining groups were identified as P. syringae pv. syringae (Pss). The pathogenicity test indicated that Pss strains were the causal agent of bacterial wheat leaf blight in Fars and Kohgiluyeh & Boyrahmad provinces. Whole protein electrophoretic patterns were similar in Pss isolates but only a few showed small variation in some subordinated bands. Pathogenic strains of Pss were also isolated from annual and perennial weeds such as foxtail, hairy vetch, oat grass, barley grass and Cynodon dactylon in some areas including Saadat Shahr and Marvdasht. Among the wheat cultivars tested, Tajan was susceptible to the pathogen but others were immune, resistant, moderately resistant, or moderately susceptible. The results showed that Pss is a seed-born pathogen in wheat kernel perhaps as endophyte in the seeds.
J. Poureza, M. Mohammad Alipour,
Volume 7, Issue 4 (1-2004)
Abstract

This experiment was conducted to investigate the effect of whey via drinking water on broiler chicken performance. In a completely randomized design, whey at levels of zero, 10, 20, 40, 80, and 100% of drinking water was used for 47 days. 720 day-old broilers (Ross) were divided into 24 groups, 30 chicks per group and each experimental treatment was given to four replicates from 7-54 days of age. The whey was supplied freshly. The chicks had free access to feed and water during the experimental period. All chicks were fed with starter, grower, and finisher diets. Chicks in all pens were weighed and their feed consumption was calculated at 21, 42 and, 54 days of age. At the end of the experiment, two males and two females from each pen were selected, killed and their carcass, abdominal fat, pancreas, liver and ileum were weighed. Ileal contents of each pen were collected and pooled and kept at -20oC for bacterial count. The litter moisture content of each pen was determined at days 21 and 42. Body weight, daily body weight gain, feed conversion, and litter moisture were significantly (P<0.01) affected by whey levels. These indices decreased as a result of consuming whey by more than 40% feed conversion, however, increased. Percentage of carcass decreased significantly (P<0.01) due to consumption of 80 and 100% whey. Percentages of abdominal fat, liver, and pancrease were not significantly affected by the amount of whey. Percentage of ileum increased and showed significant (P<0.05) difference with control group. The regression equations for body weight and daily body weight gain, feed conversion and litter moisture in all ages, were significant (P<0.05) and polynomial. This indicated that consumption of whey by more than 40% caused reduction in broiler performance. No significant differences were observed in ileal contents of Lactobacillus and Entrobacteria due to different levels of whey, but total bacteria in ileum contents increased significantly (P<0.01) as whey content in drinking water increased.
Sh. Darvishi, H. Lamea, F. Akbari Nakhjavani, F. Darvish,
Volume 8, Issue 2 (7-2004)
Abstract

The effects of growth of two strains of lactic acid bacteria on microbial flora of ground beef after packaging in air permeable packs were studied under workshop conditions. The strains isolated from dairy products were added to ground beef at a density of 104 CFU/g after identification and antibiosis test against indicator bacteria (Escherichia coli and Staphylococcus aureus). The two strains were Lactobacillus casei subsp. casei 102, and Lactococcus lactis subsp. lactis var. diacetylactis 202. Inoculated and control samples were stored for up to five days under aerobic conditions in cold storage facilities with a temperature fluctuation between of –1°C to 5°C). Enumeration of different bacterial groups (total aerobic microorganisms, lactic acid bacteria, Pseudomonas spp., coliforms, Staphylococcus aureus, fungi) and detection of Escherichia coli were carried-out during storage period. The number of lactic acid bacteria in samples inoculated with lactobacillus casei subsp. casei 102 (treatment 1) increased during storage period, whereas total number of aerobic microorganisms, Pseudomonas spp., coliforms, and yeasts reduced. In samples inoculated with Lactococcus lactis subsp. lactis var. diacetylactis 202 (treatment 2), the number of yeasts decreased considerablely. As a result, Lactobacillus casei subsp. casei 102 can be used as a suitable antagonist of spoilage and pathogenic bacteria in ground beef under aerobic Conditions in cold storage facilities with a temperature variation between –1°C to 5°C.
S. Mashhadi Asghari, N. Aliasgharzadeh,
Volume 8, Issue 4 (1-2005)
Abstract

Peat is the best known and the most widely used rhizobial carrier, but unfortunately, it lacks of sufficient sources in Iran. This research aimed at using some inexpensive materials as carrier instead of peat for producing the rhizobial inoculant for alfalfa. For this purpose, the physical and chemical properties of some materials to be used as carriers were determined and the viability of Sinorhizobium meliloti on these carriers during 6 months at +4 ºC was evaluated. The selected carriers were 1) Peat (control) 2) Vermicompost 3) Bilogical Filter Waste (BFW) 4) Vermiculite+Vermicompost (1:1w/w), and 5) Vermiculite+BFW (1:1w/w). Also to determine the suitable moisture content of carriers on prolongation of bacterial survival, two matric potential levels including –10 and –30 kpa were applied on the carriers. The results showed that vermiculite+BFW (1:1w/w) not only maintained a standard number of bacteria compared to the other treatment, but also caused good nodulation on alfalf seedling at the end of the 6th month. Although BFW carrier maintained a high number of bacteria after six months storage, it can not be recommended as a suitable carrier because of its negative effect on nodulation. In this study, higher number of bacteria was maintained in the matric potential of –30 kpa than –10kpa.
M. Alikhani, A. A. Alamooti, Gh. R. Ghorbani, N. Sadeghi,
Volume 9, Issue 3 (10-2005)
Abstract

Whole plant sunflower and sunflower without head were ensiled in plastic containers using additives in a 2×2×2×2 factorial arrangement in a completely randomized design with three replicates. Additives were molasses, urea (at 4 and 0.5 percent wet basis respectively), and a bacterial inoculant (Agros 6gr/ton of forage as manufacture’s instruction). Compared with silages without head, ensiling sunflower as whole plant resulted in lower pH, neutral detergent fiber (NDF) and ash versus higher concentrations of crude protein and ether extract (EE). No significant effect of seed was observed on lactic acid concentration and dry matter degradability (P<0.05). With the addition of molasses, the cell wall components and the EE concentrations reduced, but dry matter content increased. Highest degradability of dry matter was also observed in molasses-treated silages (average 58.04, P<0.007). With the addition of urea a significant increase was seen in CP content of either whole plant or headless silages (P<0.0001) with no effect on other fermentation characteristics. Bacterial inoculation of silages elevated the levels of lactic acid (2.81% DM) with more pronounced effect on headless than whole plant silages. Regardless of type of additives, butyric acid concentrations were ideally minimal (near to 2%) indicating least clostridial damage. The qualitative visual evaluation of the silage on the basis of scale of 1-20 for the smel, colour and structure of the silage and giving number to the mold damage on the basis of 1-10 placed all the treatment in an acceptable quality, although the mold damage was highest in silages without molasses. Results of this experiment indicated that better quality of silalges could be provided by adding molasses and ensiling whole plant sunflower. Improving quality of silages contained molasses might necesitate the additiion of a source of water-soluble carbohydrate at ensiling.
L. Rasipour, N. Aliasgharzadeh,
Volume 11, Issue 40 (7-2007)
Abstract

Certain microorganisms in soil have phosphate solubilizing ability. Phosphorus has an important role in plant nutrition and N2 fixation in legumes. The interactive effect of three phosphate solubilizing bacteria (PSB) and Bradyrhizobium japonicum on yield and N, P, K uptake and nodulation of soybean root (Glycin max L. CV. Harcor) was studied under greenhouse conditions. In greenhouse experiment treatments consisted of a factorial combination of four levels of PSB (without PSB M0 ,Pseudomonas putida M1 , Aeromonas hydrophila M2 , Pseudomonas fluorescens M3) and two levels of B.japonicum (without bacterium B0 and with bacterium B1) and three levels of P(P0 = 0 , P1=29, P2 = 58 mg triple superphosphate/Kg soil) in a randomized complete block design with four replications. At harvest, shoot dry weight, seed weight, nodule number, dry and fresh weight of nodules and concentrations of N, P, K in shoot dry matter were measured. PSB significantly increased shoot dry weight, N, P, K concentrations in shoot, fresh and dry weight and number of root nodules. B.japonicum had positive significant effect on these parameters as well as on seed weight. Dual inoculation of plants with PSB and B.japonicum had significant effect on shoot dry weight, P and N concentrations in shoot. Increasing phosphorus levels significantly increased plant dry weight, shoot P concentration and seed weight. Highest P concentration in shoot was obtained at P2 level but in plants inoculated with P.putida, dry weight at P1 level was not significantly different from P2 level.
G. Khodakaramian, J. Swings,
Volume 12, Issue 45 (10-2008)
Abstract

Protein electrophoretic pattern similarity among 21 strains of Xanthomonas axonopodis pv. citri isolated from Hormozgan and Kerman provinces together with the representatives of reference strains of X.a. pv. citri and X. a. pv. aurantifoli and 246 strains of the other Xanthomonas spp. including : X. a. pv. citri, X. a. pv. glycins, X. a. pv. manihotis, X. c. pv. campestris, X. a. pv. phaseoli, X. cassavae, X. vesicatoria, X. c. pv. euphorbia, X. c. pv. arracaciae, X.c. pv. malvacearum, X. a. pv. clitoriae, X. a. pv. citrumelo, X. a. pv. aurantifolii, X. a. pv. alfalfae, X. cucurbitae, X.c.pv. dieffenbachiae, X. vasicola. pv. holcicola, X. melonis, X. hortorum. pv. pelargonii, X. a. pv. poinsettiicola, X. arboricola pv. pruni, X. c. pv. raphani, X. a. pv. ricini, X. a. pv. vasculorum, X. a. pv. vignicola, X. c. pv. armoraciae, X. c. pv. barbareae and X. c. pv. Carotae was compared and analyzed via Gel Compare version 4.2 software. Results indicated 86% of mean similarity among the strains tested. The highest similarity was 100% for strains isolated from Hormozgan and Kerman provinces and X. a. pv. citri LMG 9176 and X. a. pv. citri LMG 9654. The lowest similarity was 84.90% for these strains and X. c. pv. euphorbia LMG 7402 and X. a. pv. ricini LMG 7444. The 100% of protein pattern similarity among the strains isolated from Hormozgan and Kerman provinces and the reference strains from pathotype A (X. a. pv. citri LMG 9176 and X. a. pv. citri LMG 9654) was supported by host range and pathogenicity patterns of these strains obtained from our previous study.
A Kochaki, A Sadeghi, F Shahidi, A Mortazavi, M Nasiri,
Volume 13, Issue 47 (4-2009)
Abstract

This study was intended to use the sourdough LAB containing specific starter cultures for Barbari bread production and reduction of its staling. For sourdough preparation, fresh microbial cells were collected by centrifugation from LAB cultures. Then 1.5% of flour (w/w) from these washed cells with the same amounts of wheat flour and tap water and 0.25% (w/w) active dry yeast extract, containing Saccharomyces cerevisiae were mixed. The effects of fermentation time (8, 16 and 24 hours), fermentation temperature (28, 32 and 36 ºC) and type of starter culture (Lactobacillus sanfransicencis, Lactobacillus plantarum and a mixture of both LAB) were analyzed in a completely randomized design with factorial experiment with 4 replications. Bread staling was determined by its measuring crumb hardness and specific volume in 1, 24, 48 and 72 hours after baking. Correlation between variables was obtained by multivariate regression, and regression models were exhibited. The results showed that sourdough had significant effect (p≤0.05) on reduction of Barbari bread staling at 1, 24, 48 and 72 hours after baking in comparison with control sample. Moreover, the sample prepared with Lactobacillus plantarum (24 h fermentation time and 32 ºC fermentation temperature) had the maximum specific volume and the least staling, 72 hours after baking.
A Akhavan, M Bahar, Gh Saeedi, M Lak,
Volume 13, Issue 47 (4-2009)
Abstract

To understand the role of relative humidity rate, host genotype, inoculation method and growth stage in epidemiology of bean common blight, two greenhouse experiments were carried out monitoring epiphytic population size of Xanthomonas axonopodis pv. phaseoli (Xap) and disease severity. The result showed significant differences among genotypes, inoculation methods and growth stages for epiphytic population size and sam effects except genotypes for disease severity. The epiphytic population size was significantly higher on spray inoculated Khomein cultivar of bean during flowering (R6). However, the relative humidity rates did not significantly affect population dynamics of epiphytic Xap and the disease severity. Two field experiments were also carried out to determine the effects of irrigation systems (furrow irrigation and overhead sprinkler irrigation), inoculation method, growth stage and their interactions on epiphytic population size of Xap and disease severity. The result showed that the epiphytic population size and disease severity were higher on spray inoculated plants irrigated with overhead sprinkler system during pods filling (R8). In this study, a significant positive correlation was found between epiphytic population size of Xap and bean common bacterial blight severity.
M Sh.zeinodin, M Tadyoni, Sh Dokhani, S Soleymanian Zad,
Volume 13, Issue 48 (7-2009)
Abstract

Exo-polysaccharide (EPS) production by some lactic acid bacteria (starter) during fermentation could affect the physical properties of yoghurt. In this study, at first EPS content and its effects on physical properties of three traditional (S1, S2 and G) and one industrial (I) yoghurt samples were studied. The results showed that there was significant differences in fat content, solid non-fat content, pH, EPS content, viscosity, elasticity and sensitivity to syneresis among samples. Statistical analysis based on a completely randomized design revealed that a significant correlation exists between EPS content and viscosity as well as resistance to syneresis of the samples. Fat content and solid non-fat content of the samples showed no correlation with physical properties of the samples. In the second phase of the study, to remove effects of raw milk composition and to be able to attribute the results to the EPS producing activity of the starter, skim milk was used to produce yoghurt samples using yoghurt samples tested in the first stage only as sources of starter. In these yoghurt samples, there were significant differences between amount of EPS and physical properties of yoghurts. There was also a significant correlation between EPS content and physical properties of each sample.
A Khodashenas, A Koocheki, P Rezvani Moghadam, A Lakzian , M Nassiri Mahallati,
Volume 14, Issue 52 (7-2010)
Abstract

Among the biodiversity of soil microorganisms, bacteria have the basic role in soil functions. In order to determine the diversity and abundance of soil bacteria in arid regions, and also to study the effect of agricultural practices on them, a study was conducted in winter wheat fields on Shirvan, Mashhad and Gonabad. In each region, high and low input fields of winter wheat and a natural system for comparison were selected. Use of agricultural inputs was criteria for selection of low and high input fields in each region. Soil sampling was done on fields and natural systems and organic matter content, abundance and diversity of soil bacteria were measured in soil samples. Species richness and abundance of soil bacteria was affected by region and so that natural system of Gonabad has the minimum of species richness among the studied systems and the differences of other systems was not significant. Abundance of soil bacteria in 1 g dry soil was maximum in Gonabad and minimum in Shirvan. Abundance of soil bacteria was affected by organic matter and in low and high input systems of Gonabad and low input system of Mashhad was greater than other systems. Overall, 19 species of bacteria that belonged to 4 genus were detected. Results showed that species richness and abundance of soil bacteria in studied systems were relatively low and agricultural practices have not significant impact on these organisms, so that species richness and abundance of soil bacteria were improved in agricultural systems of Mashhad and Gonabad. Pattern of bacterial diversity showed that regional and agricultural stresses were affected on bacterial function so that in high level of stresses, species richness decreased and function of soil bacteria was restricted to decomposition of organic matter. Therefore, organic matter of soil must be increased and agricultural stresses must be decreased to improve of soil bacterial functions.
V. Sarvi Moghanloo , M. Chorom, H. Motamedi , B. Alizadeh, Sh. Ostan,
Volume 15, Issue 56 (7-2011)
Abstract

Soil enzymes are the catalysts for important metabolic process functions including the decomposition of organic inputs and the detoxification of xenobiotics. The aim of this research was to determine the pattern of variation in the activities of dehydrogenase, urease, lipase and phosphatase enzymes, determining the number of hetrotrophic and degrading bacteria and measuring the soil respiration and yield plants during the bioremediation of oil contaminated soils. To this aim, the soil deliberately contaminated with crude oil at a 1 and 2 wt% rate and in four treatments including: plant multiflorum (T1), plant multiflorum with mycorrhiza inoculation (T2), plant multiflorum with oil degrading bacteria inoculation (T3), plant multiflorum with mycorrhiza and oil degrading bacteria inoculation (T4) was employed for bioremediation of oil contaminated soil. The above parameters were determined in five stages during bioremediation and ultimately for the yield of plants at the end of this period .The results showed that the activity of urease and hydrogenase anzymes were increased or decreased parallel to contaminant increase and decrease. In contrast, the activity of lipase anzyme was decreased with contaminant increase and increased with contaminant decrease. Therfore, it can be a good choice for monitoring of bioremediation of contaminated soils. The results showed that the number of degrading and hetrotrophic microorganisms were increased by increasing the amount of contamination and the number of degrading and heterotrophic bacteria were decreased parallel to contaminant decreasing especially in those samples treated with mycorrhiza inoculation. The plant yield and amount of degradation of oil compounds were highest in mycorrhiza plus degrading bacteria treatment.
A. Farrokhian Firouzi, M. Homaee, E. Klumpp, R. Kasteel, M.sattari,
Volume 15, Issue 58 (3-2012)
Abstract

Microbial transport in soil is critical in different ways, especially in groundwater contamination and bioremediation of groundwater or soil. The main objectives of this research were quantitative study of bacterial transport and deposition under saturated conditions in calcareous soils. A series of column leaching experiments were conducted. Breakthrough curves (BTCs) of Pseudomonas fluorescens and Cl- were measured. After leaching experiment the bacteria was measured in difference layers of the soil columns. The HYDRUS-1D one- and two-site kinetic attachment-detachment models were used to fit and predict transport and deposition of bacteria in soil columns experiments. The results indicated that two-site kinetic model leads to better prediction breakthrough curves and bacteria retention in the calcareous soil in comparison with one-site kinetic model. Interaction with kinetic site 1 was characterized by relatively fast attachment and slow detachment, whereas attachment to and detachment from kinetic site 2 was fast. Fast attachment and slow detachment of site 1 was attributed to soil calcium carbonate that has favorable attachment site for bacteria. The detachment rate was less than 0.01 of the attachment rate, indicating irreversible attachment of bacteria. Most of the cells were retained close to the soil column inlet, and the rate of deposition decreased with depth. Microbial reduction rate for the soil was 4.02-4.88 log m-1. High reduction rate of bacteria was also attributed to soil calcium carbonate that has favorable attachment site for bacteria.
M. Rahmanian, H. Khodaverdiloo, M. H. Rasouli Sadaghiani, Y. Rezaie. Danesh, M. Barin,
Volume 15, Issue 58 (3-2012)
Abstract

Arbuscular mycorrhizae (AM) and Plant Growth Promoting Rhizobacteria (PGPR) associations are integral and functioning parts of plant roots. These associations have a basic role in root uptake efficiency as well as improvement of plant growth in degraded environments including heavy metals contaminated soils. This study was conducted to evaluate the effects of heavy metal-resistant soil microbe's inoculation on bio-availability of Pb and Cd in soil, plant growth as well as metal uptake by Millet (Pennisetum glaucum), Couch grass (Triticum repens) and wild alfalfa (Medicago sativa). A soil sample was treated by different levels of Pb and Cd (soil 1). Native microbial inoculums were obtained from alfalfa rhizosphere soils adjacent to Pb and Cd mines in Zanjan region (soil 2), then added with weight ratio of 1:5 (w/w) to soil 1. Host plants including millet, couch grass, and alfalfa were grown in pots and kept in greenhouse conditions. At the end of growing period, shoot dry matter and Pb and Cd concentrations in plant and soil were measured. Results indicated that plants yield and Pb uptake were significantly higher in non-inoculated treatments (p ≤ 0.05). However, Cd uptake by plants was greater in inoculated treatments (p ≤ 0.05). Couch grass showed the most accumulation potential of Cd and Pb among the studied plants.
M. Aalipour Shehni, A. Farrokhian Firouzi, H. Motamedi, A. Koraei,
Volume 19, Issue 71 (6-2015)
Abstract

Macrospore created by decaying plant root provides pathways for rapid transport of pollutants in soil profile. The main objective of this study was quantitative analysis of the effect of plant root (Zea mays L.) on bacterial and chloride transport through soil. Experiments were conducted in 9 soil columns packed uniformly with loamy sand. The treatments were bare soil, bare soil with corn (Zea mays L.) root and bare soil after decaying the corn root. The Breakthrough curves of Chloride were measured. Breakthrough curve (BTCs) of Escherichia coli and chloride were measured, too. The HYDRUS-1D one and two site kinetic attachment–detachment models were used to fit and forecast transport and retention of bacteria in soil columns experiment. The results indicated that the difference between soil hydraulic properties (saturated hydraulic conductivity and flow velocity) of the treatment was significant (p < 0.05). The result also showed that the two-site kinetic model leads to better prediction of breakthrough curves and bacteria retention in the soil in comparison with one-site kinetic model. Interaction with kinetic site 1 was characterized by relatively fast attachment and slow detachment, whereas attachment to and detachment from kinetic site 2 was fast. Most of the cells showed retention close to the soil column inlet, and the rate of deposition decreased with depth. Low reduction rate of bacteria of the soil columns with plant root and with void root channel indicated the presence of macrospores in the soil created by deep corn root system.


Mh. Rasouli Sadaghiani, S. Sadeghi, M. Barin, E. Sepehr, B. Dovlati,
Volume 20, Issue 78 (1-2017)
Abstract

Potassium is the most abundant nutrition element in the surface soil but most of the potassium is unavailable to the plants. The present study was conducted with the aim of isolation of potassium solubilizing bacteria from rhizosphere soil and evaluation of quantitative ability of released potassium from different sources of silicate by strains. For this propose, laboratory and greenhouse evaluations were carried out on corn (Zea mays L. Cv. single cross 640 (as a factorial in a completely randomized design with three replications. Laboratory factors were potassium sources (four levels), incubation time (seven levels) and microbial inoculation (six strains) and greenhouse factors were potassium sources (five levels) and microbial inoculation (four strains). The results showed that among the bacterial strains KSB13 had maximum dissolution diameter (25 mm) and solubilisation index (SI=3). The highest potassium content (3/32 µg/mL) was released from biotite by strains of KSB10 after ten days incubation. The microbial inoculation increased root dry weight and plant height for 30 and 25 percent, respectively, compared to control treatments. Also the mean shoot dry weight and K content in microbial treatments of silicate minerals were respectively increased 3/75 and 1/57 times higher than control treatment. It can be concluded that microbial inoculation causes potassium release from silicate minerals and improved plant growth.


M. H. Rasouli0-Sadaghiani, H. Khodaverdiloo, M. Barin, S. Kazemalilou,
Volume 22, Issue 1 (6-2018)
Abstract

The use of plants and soil microorganisms is a promising technique for the phytoremediation of heavy metal-contaminated soils. This study was carried out in order to evaluate the soil microbial potential with four Cd concentration levels (0, 10, 30 and 100 mg kg-1); the study also addressed the inoculation of arbuscular mycorrhizal fungi (AMF) species (a mixture of Glomus species including G. intraradices, G. mosseae and G. fasciculatum) as well as plant growth promoting rhizobacteria (PGPR) (a mixture of Pseudomonas species including P. putida, P. fluorescens, and P. aeruginosa) with the Centaurea cyanus plant. The soil sample was spiked uniformly with Cd nitrate salt to create different Cd concentrations. The contaminated soils were then sterilized and subsequently inoculated with AMF and PGPR. The results indicated that with increasing the soil Cd concentration, colonization percent, abundance of rhizobateria, shoot biomass, and shoot relative biomass were significantly decreased, while the  proline content and the shoot Cd concentration were significantly increased (P≤0.05). The mean of Cd extracted in AMF and PGPR treatments was 1.8 and 2.8 and the translocation factor was 1.2 and 1.5 times higher, as compared to the corresponding control treatments, respectively. It could be concluded that microbial inoculation, in addition to improving plant growth, plays an important role in the Cd phytoremediation efficiency by plant.

H. Aalipour, A. Nikbakht, N. Etemadi, M. Soleimani, F. Rejali,
Volume 23, Issue 2 (9-2019)
Abstract

Trees decline is a complex physiological disease that results from the interactions between several factors, one of which is heavy metal stress that ultimately leads to the death of trees. This experiment, which was conducted during 2016-2017 at the campus facility of the Department of Horticulture at Isfahan University of Technology, was conducted to investigate the effects of inoculation with arbuscular mycorrhizal fungi (AMF) (Rhizophagus intraradices and Funneliformis mosseae inoculated, and the combination of both species) and plant growth promoting rhizobacteria (PGPR), Pseudomonas Flourescens, on the growth responses of Arizona cypress (Cupressus arizonica G) to different concentrations of cadmium (0, 5, 10, 15, 20); this was done as a factorial experiment based on a completely randomized design, with three replications. The interactions between AMF, PGPR, and cadmium on potassium and iron concentration, height, and dry weight of Arizona cypress seedlings were significant. By increasing the concentration of cadmium in most of the treatments, the colonization, phosphorus, potassium and iron concentrations, height and dry weight of the shoot Arizona cypress seedlings were decreased, while the percentage of electrolyte leakage and proline content were increased. The AMF-inoculated plants increased phosphorus, potassium and iron concentrations, Height, shoot dry weight, proline content and reduced electrolyte leakage percentage, as compared to non-mycorrhizal (control) plants. In plants inoculated with both microorganism (mycorrhizal fungi and Pseudomonas), there was a positive effect regarding the concentration of nutrients such as potassium and iron; there was also the improvement of growth characteristics such as height and dry weight of the seedlings, as well as the appearance and freshness of the plant. The results, therefore, showed that inoculation of Arizona cypress seedlings with the combination of mycorrhizal fungi and Pseudomonas fluorescens bacteria could have a positive effect on the growth and survival of this tree under Cadmium stress condition.

M. Mirjani, M. Soleimani, V. Salari,
Volume 24, Issue 1 (5-2020)
Abstract

Growing concerns about water pollution and its potentially harmful effects on human being have stimulated serious efforts to develop reliable biological monitoring techniques. The bioluminescent analysis is one of the most promising approaches for the biomonitoring of the environment, due to the sensitivity of the luminescent system to even micro quantities of the pollutants. The aim of the current study was to assess the petroleum compounds toxicity using Vibrio fischeri bacterium. The growth pattern of the bacterium was determined in photobacterium broth using the optical density measurement at 600 nm, which showed the optimum growth time of 16-18 hours after inoculation. In this research, the effects of environmental parameters such as temperature, pH and various concentrations of oil on the growth and luminescence of Vibrio fischeri were examined. The results revealed that the optimum growth conditions of the bacterium after 16 hours included the temperature of 25 °C and pH 7. Besides, the growth and luminescence intensity of Vibrio fischeri were a function of total petroleum hydrocarbon concentrations in the medium, which were significantly reduced in oil concentrations by more than 4% w/v. Therefore, the Vibrio fischeri could, therefore, have the potential for monitoring of petroleum pollutants in the aqueous media.

M. Dehghanian, H. Tabatabaee, H. Shirani, F. Nikookhah,
Volume 27, Issue 1 (5-2023)
Abstract

In sustainable agriculture, cow manure is used for greater productivity, a rich source of E-Coli pathogenic bacteria. The objective of this research was to investigate the simultaneous effect of the fractionation size of cattle manure and irrigation water salinity on the retention of E-Coli bacteria in the depths of the sand column with a height of 10 cm under saturated flow. Four different particle fractions of cow manure (1-2, 0.5-1, 0.25-0.5, and smaller than 0.25 mm) were added to the surface of the sand column at the scale of 30 tons per hectare, then leaching was done with different salinities (0, 0.5, 2.5, 5, and 10 dS/m) up to 10 pore volumes, then samples were taken from the depths of 0, 3, 6, and 12 cm. The number of bacteria in each sample was determined by the live counting method. The results showed that the effect of all sources of change and their interaction effects on the retention of bacteria in the soil is significant at the level of 5%. Salinity had a negative effect on the retention of bacteria, and the highest and lowest values of the relative concentration of bacteria (the result of dividing the number of bacteria in each soil depth by the initial number of bacteria in the desired manure treatment) were in 0 dS/m and 10 dS/m salinity of leaching water, respectively. By decreasing the size of cow manure particles due to the increase in hydrophobicity and blocking of preferential pores, the retention of bacteria decreased in all investigated soil depths. The highest and lowest retention of bacteria in the soil were investigated in the largest cow manure particle size (1-2 mm) and the smallest cow manure particle size (less than 0.25 mm), respectively. In addition, the highest relative concentration of bacteria in the soil was seen in the depth of 0-3 cm, and no significant difference was seen in other soil depths.


Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb