Search published articles


Showing 32 results for Manure

Z. Mosleh, M. H. Salehi, M. Rafieiolhossaini,
Volume 18, Issue 68 (9-2014)
Abstract

  Many studies have been carried out on pure minerals to study the effect of plant roots on minerals weathering, but information on mineral weathering that normally occurs in different soil fractions is limited. To investigate the effect of

German Chamomile (Matricaria chamomilla L.) cultivation on mineral weathering of clay and silt fractions in five different soil series amended or not amended (control) with cattle manure, a factorial experiment was performed in a randomized complete block design (RCBD) with three replications. At harvest time, rhizosphere soil was separated and mineralogical studies were performed through X-ray diffraction (XRD) and compared to before cultivation Results showed that in clay sized particles, trioctahedral chlorite transformed to di-octahedral chlorite while kaolinite disappeared. In silt sized particles, feldspar transformed to amphibole and vice versa The pots amended with manure showed the same changes for clay and silt sized particles as the pots without manure.
S. Rahimi, M. Afyuni, A. H. Khoshgoftarmanesh, M. Noruzi,
Volume 19, Issue 71 (6-2015)
Abstract

Management of organic and inorganic treatments may have positive or negative effects on soil quality, plant growth and human nutrition. The objectives of this study were to determine the effects of organic and inorganic zinc fertilizer application on soil quality indicators and wheat yield. This research was conducted at Agricultural Research Station Roudasht, Isfahan, Iran. Sewage sludge and cow manure (5 and 10 t/ha), ash rubber (1 t/ha), powder rubber (200 kg/ha), ZnSO4 (40 kg/ha) were applied and wheat was cultivated. Soil samples were collected at tilling and harvest stages. After taking samples and measurements of the soil parameters, we determined the critical limits for each category and class rating for the each soil parameters, and the soil quality index was calculated. The results showed sewage sludge and rubber ash were significantly effective in increasing soil bioavailable Zn compared to other treatments. Application of sewage sludge and cow manure at 10 ton/ha improved soil quality. The expanded soil quality index can help better understand the effect of fertilizers on soil. A positive and significant relationship between soil quality indicators and Zn uptake and wheat yields was also observed. Our results indicate that addition of 10 t/ha sewage sludge as fertilizer can significantly improve soil quality, supplying the necessary amount of Zn for wheat growth.


M. Zolfi Bavariani, A. Ronaghi, N. Karimian, R. Ghasemi, J. Yasrebi,
Volume 20, Issue 75 (5-2016)
Abstract

This study was conducted to investigate the effects of poultry manure (PM) and its derived biochars on chemical properties of a sample calcareous soil. Poultry manure and its derived biochars at 200(B200), 300(B300) and 400(B400)°C were incorporated with 400 g of soil at 2% level (w/w) and incubated for 150 days. Some chemical properties of soil and bio-availability of some nutritional ingredients such as phosphorous, potassium, iron, manganese, zinc and copper were determined at different times of incubation. Soil nutrients availability, organic carbon (OC), electrical conductivity (EC) and cation exchange capacity (CEC) increased by addition of all these organic substances. Biochars prepared at higher temperatures were more effective in increasing soil OC and its durability. Addition of PM and B200 decreased soil pH, whereas B400 increased it. Although highest soil EC was observed in B300 and B400 treated samples in the early stages of incubation, the rate of increasing in soil EC was higher at PM and B200 treated samples. In general, it was concluded that biochar prepared at 300°C had the highest effect on availability of nutrients and their durability in the soil. 


M Zolfi Bavariani, A. Ronaghi, N. Karimian, J. Yasrebi, Reza Ghasemi,
Volume 21, Issue 1 (6-2017)
Abstract

This study was conducted to investigate the effects of poultry manure (PM) and derived biochars on phosphorous (P) availability and apparent recovery in a calcareous soil. Treatments consisted of four rates of P (0, 30, 60 and 90 µgg-1) and five organic substances (blank, poultry manure and derived biochars at 200, 300 and 400°C). organic substances were incorporated with 400 g of soil at 2% level (w/w). All soil treated samples plus control were incubated for 150 days. Soil P availbility determined at 8 different stage of incubation time period. Phosphorous availability was less in untreated soil samples with organic substances and also decreased with time. Although P recovery from inorganic P fertilizer was high in the early stages of incubation time compared to treated soil samples but decreased with time, if not treated with organic substances. Phosphorus availability and recovery increased with time in PM and biochares treated soil samples. Simultanous application of inorganic P and organic substances decreased apparent P recovery. Negative interaction obsorved between organic substances and high rates of inorganic P fertilizer on P availability. It was concluded that PM biochar prepared at 300°C had the highest effect on adjusting P availability in calcareous soil.


Mrs Zahra Mehrabi, Dr Hamid Reza Eshghizadeh, Mrs Afsane Nematpour,
Volume 21, Issue 1 (6-2017)
Abstract

To determine the nitrate pollution (water, soil, and tubers) in small (< 0.5 ha), medium (0.5- 1 ha) and large (> 1 ha) size of potato fields, this study was conducted in Fereidan region of Isfahan province during growing season of 2014-2015. For this purpose, the amounts of inputs and the tuber yield were recorded in each farm. Also, average nitrate-N concentration in irrigation water, soil and tubers of different potato farms were measured before planting and after harvesting. The results showed that the average soil N-nitrate concentration in small, medium and large size farms were 16.3, 17.4 and 19.9 mg kg-1 before planting and 10.3, 13.3 and 23.3 mg kg-1 after harvesting, respectively. The average N-nitrate concentration of irrigation water in small, medium and large size farms were 36.3, 27.1 and 19.5 mg L-1 before planting and 47.6, 33.1 and 16.4 mg L-1 after harvesting, respectively. At the post-harvest time, NO3-N concentration of irrigation water were below the standard range concentration (45 mg L-1) in the all large farms while 87 % of small and 85% of medium farms had more than standard concentration. The nitrate concentrations of tubers in large-sized farms were lower than others. The tuber NO3-N concentration was affected by potato cultivar. The lowest concentration of nitrate was observed in the late-season potato cultivars (Agria). that might be associated with greater tubers yield.


S. Moradnia, R. Naderi, M. Najafi,
Volume 21, Issue 2 (8-2017)
Abstract

In order to investigate the persistence of organic amendments, nitrogen and zinc effects on soil characteristics in rapeseed-wheat rotation, a factor analysis was conducted in a complete random design with three replications in two consecutive years in a greenhouse. Treatments in the first year consisted of N fertilizer, municipal waste compost, vermicompost, sheep manure. The control consisted of zinc and two rapeseed cultivars. In the second year of the experiment, two cultivars of durum wheat were sown in the same pots as the first year of the experiment. Results showed that two years after application of cattle manure, a significant increase in soil electrical conductivity (41.81 %), available K (59.45 %) and available Mn (79.82 %) compared to the control were found.  Saturated soil moisture (48.57%), total N (94.66 %), available Fe (46.49 %) and available Cu (47.51 %) significantly increased by municipal waste compost compared to the control. Also, Zinc had a significant effect on soil total N (0.28 %), available K (218.4 mg/kg) and available Mn (12.89 mg/kg). Generally, the results showed that application of organic amendments can change many soil characteristics which some of their impacts might last for next upcoming years. Therefore, it is necessary to monitor the soil characteristics and nutrients availability of the fields that were treated with organic amendments in the years after application.
 


A. Ghasemi, A. Ghanbari, B. A. Fakheri, H. Fanaie,
Volume 21, Issue 3 (11-2017)
Abstract

In line with sustainable agriculture development, an experiment was conducted including tillage as the main factor in two conventional systems (plowing and mixing fertilizer with soil) and no tillage (leaving residuals of green manure and direct corn sowing). The fertilizer resources were T0: control, T1: barley green manure without chemical and manure fertilizers, T2: barley green manure with full use of the recommended chemical fertilizer (NPK) to barley containing urea, super triple phosphate and potassium sulphate respectively as 165, 90, and 75 kg/ ha, T3: green manure with two -third residual of chemical fertilizer for barley and a third of the residual to corn, T4: green manure with one- third chemical fertilizer for barley and two-third for corn, T5: barley green manure mixed with 50% manure and 50% chemical fertilizer, and T6: green manure with 40 tons of manure used as a sub-plot in the split plot and in completely random blocks with three replications for two crop years ( 2013-2014) at the Agricultural Research Station, Sistan. The results showed that in comparison with no-tillage, the conventional tillage resulted in a significant increase in grain yield, the contents of nitrogen, phosphorus, potassium and soil organic carbon, bulk density and moisture content of the soil decreased in the conventional tillage. Sources of fertilizer (organic and chemical fertilizers) significantly increased soil organic carbon, nitrogen, phosphorus, potassium, and soil moisture content. The pH and soil bulk density factors decreased after using manure sources. Interaction tillage in the fertilizer sources showed that in the conventional tillage and Treatment T5 (mixture of manure, green and chemical fertilizers) the highest yield of corn was obtained with an average of 8471 kg/ha. The results of this experiment reported that using conventional tillage system with mixture of 50% manure, green and chemical fertilizers can increase corn grain yield, provide the dynamics of nitrogen, phosphorus, potassium, organic carbon, and improve soil bulk density and soil pH.
 


T. Rahimi, A. Moezzi, S. Hojati,
Volume 22, Issue 1 (6-2018)
Abstract

Biochar is a soil amendment that has a high capacity to adsorb heavy metals. The aim of this study was to identify the influence of cow manure and its biochar on nickel adsorption and to determine the best models to describe the kinetics of Ni retention. Accordingly, cow manure and its biochar were added to the soils at the levels of 0, 2 and 4%, and samples were incubated for 90 days. Soil samples were equilibrated with 100 mg L-1 Ni solutions for periods of 1 to 2880 min. Then, the concentration of nickel was measured. The Ni adsorption data were fitted to seven commonly used kinetic models. The results showed that cow manure and its biochar application in all times and levels increased nickel adsorption more than the control. There was also a significant difference (P<0.05) between cow manure and its biochar. Application of 4% biochar, as compared with the same level of cow manure, and the control, increased the Ni adsorption by 23 and 44%, respectively. Power function was the best fitted model describing the patterns of Ni adsorption, as evidenced by the relatively high values of R2 and the low values of SE. However, the Elovich function had some R2 similar to that of power function, but it could not be used as an adequate function to investigate the kinetics of nickel adsorption due to their high values of SE. The zero order, the first order, the second order, the third order, and parabolic diffusion equations were not well fitted to the Ni adsorption data.

H. Shirani, S. Shirvani, M. Moradie,
Volume 22, Issue 2 (9-2018)
Abstract

In recent years, microbial contamination of surface and groundwater is a serious problem in some countries, leading to dangerous diseases. Soil salinity and irrigation water can affect the amount of transport or survival of bacteria in soil. In this study, the effect of different levels of salinity of irrigation water with EC: 0.5, 2.5, 6 ds/m and three manures including poultry manure, cow manure and the mixture of poultry and cow manure with 10 ton ha-1 on the transport of Escherchia coli was investigated in disturbed soil columns with 30cm height and 10cm diameter under unsteady-state water conditions. The concentration of Escherchia coli was measured. The severity of the effluent contamination of the treated columns with water salinity was 6 ds/m, which was less than that with the salinity of 2.5 and 0.5 ds/m. This difference was significant at the 0.01 probability level. Also, the effluent contamination of poultry manure-treated columns was greater than the cow manure and the mixed manure, and the contamination of mixed manure was greater than that of cow manure. The interaction of different salinity treatments on the concentration of Escherchia coli in different fertilizer treatments was significant at the 0.01 probability level. The results showed that the concentration of the released bacteria was affected by irrigation water salinity and with increasing the salinity, the concentration of the bacteria was reduced.

J. Bayazzadeh, E. Sepehr, H. Momtaz,
Volume 23, Issue 2 (9-2019)
Abstract

To study the behaviour of phosphorus (P) sorption in the agricultural soils of Khoy region and the effect of long-term cultural management with the application of poultry manure on the P sorption parameters, bath experiments were carried out with 16 soil samples (8 cultivated and 8 virgin soils) and 9 initial P concentrations from 0 to 30 mg L-1 in 0.01M CaCl2 as a background solution. After equilibrium, the remaining amount of P in solution was measured and the experimental sorption data were fitted to the Langmuir (R2=0.93-0.99) and Freundlich (R2=0.87-0.99) models. The results showed that P sorption was increased with enhancing the initial P concentration, eventually reaching the steady-state plateau. Based on the coefficient of determination (R2) and the standard error of estimate (SE), both isotherms models, Langmuir and Freundlich, showed a relatively good fit to the experimental data. The maximum mono layer sorption of Langmuir (qmax) varied from 233 to 486 and from 340 to540 mg kg-1, and the energy parameter of Langmuir (KL) ranged from 0.12 to 0.50 and from 0.22 to 0.71 for the cultivated and virgin soils, respectively. Freundlich sorption capacity (KF) and intensity (n) parameters showed the same trends and KF varied from 36.4 to 123 and 59.3 to 145.2; also n varied from 1.18 to 1.50 and 1.47 to 1.71 in the cultivated and virgin soils, respectively. Consequently, all sorption parameters and the buffering indices showed a decreasing trend in the cultivated soils, as compared to the corresponding virgin soils and the cultural and fertilization management; especially, the application of the poultry manure in this region reduced phosphorus sorption by soil and then increased phosphorus availability to plants. Hence, less fertilizer would be needed to maintain a favourable P concentration in the soil solution for the optimum plant growth.

A. Motamedi, J. Abedi-Koupai, A.r. Gohari,
Volume 26, Issue 2 (9-2022)
Abstract

Water scarcity and lack of soil fertility are two major problems in the agriculture sector. This study aimed to use Azolla anzali and Lemna minor as a cover for a free surface of the water since not only do they have the potential to reduce evaporation, but they can also produce green fertilizer. Therefore, a completely randomized design experiment with 4 treatments (Azolla anzali, Lemna minor, combination of Azolla anzali+ Lemna minor and control) was performed with three replications. The surface of the reservoirs was covered with the mentioned plants and the changes in water height were measured every other day and the amount of nutrients (nitrogen and phosphorus) of the plant tissue was measured three times at the beginning, middle, and end of the period. Eventually, water loss in tanks containing Lemna, Azolla, and Lemna+ Azolla, was 39, 33.2, and 28.7% less than the control tank. The highest amount of nutrients in plant tissue was observed in Lemna, Azolla+ Lemna, and Azolla treatments, respectively. Although the amount of nutrients in the combined treatment was not higher than that of Lemna more biomass was produced, which means it can provide more fertilizer. Finally, the combined treatment of the two plants is a more suitable option to be used.

M. Dehghanian, H. Tabatabaee, H. Shirani, F. Nikookhah,
Volume 27, Issue 1 (5-2023)
Abstract

In sustainable agriculture, cow manure is used for greater productivity, a rich source of E-Coli pathogenic bacteria. The objective of this research was to investigate the simultaneous effect of the fractionation size of cattle manure and irrigation water salinity on the retention of E-Coli bacteria in the depths of the sand column with a height of 10 cm under saturated flow. Four different particle fractions of cow manure (1-2, 0.5-1, 0.25-0.5, and smaller than 0.25 mm) were added to the surface of the sand column at the scale of 30 tons per hectare, then leaching was done with different salinities (0, 0.5, 2.5, 5, and 10 dS/m) up to 10 pore volumes, then samples were taken from the depths of 0, 3, 6, and 12 cm. The number of bacteria in each sample was determined by the live counting method. The results showed that the effect of all sources of change and their interaction effects on the retention of bacteria in the soil is significant at the level of 5%. Salinity had a negative effect on the retention of bacteria, and the highest and lowest values of the relative concentration of bacteria (the result of dividing the number of bacteria in each soil depth by the initial number of bacteria in the desired manure treatment) were in 0 dS/m and 10 dS/m salinity of leaching water, respectively. By decreasing the size of cow manure particles due to the increase in hydrophobicity and blocking of preferential pores, the retention of bacteria decreased in all investigated soil depths. The highest and lowest retention of bacteria in the soil were investigated in the largest cow manure particle size (1-2 mm) and the smallest cow manure particle size (less than 0.25 mm), respectively. In addition, the highest relative concentration of bacteria in the soil was seen in the depth of 0-3 cm, and no significant difference was seen in other soil depths.


Page 2 from 2     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb