Search published articles


Showing 53 results for Grain

M. Modaraye Mashhoud, M. Esfahany, M. Nahvi,
Volume 11, Issue 42 (1-2008)
Abstract

  In order to reduce the rainfall damages on rice yield at harvest stage, a field experiment was conducted at Rice Research Institute of Iran, Rasht, in 2004 by using Sodium Chlorate as a chemical desiccant. Five seed moisture contents of Dorfak rice cultivar were considered as experimantal treatments [24 - 28% (M1), 22 - 24% (M2), 20 -22% (M3). 18 - 20% (M4) and control (M5= conventional harvesting)]. The experiment was carried out in a randomized complete block design with three replications and the effects of treatments on grain yield, head rice yield,seed germination rate and percentage, kernel breakage, kernel cracking, amylose content, gelatinization temperature and gel consistency were evaluated. Results showed that the whole plant and grain moisture contents were significantly reduced in all experimental treatments compared with control. M2 and M3 both cosiderably reduced the plant moisture content in which harvesting occurred 12 and 8 days respectively sooner than the control. In M1, due to high grain moisture and non - simultaneous grain filling in different tillers, many of panicles desiccated prior to maturity lost their quality. In M4, the crop harvested was only 2 days earlier than the control. Analysis of variance showed that there were no significant effects of treatments on evaluated traits. It seems that rice plant could be reliably desiccated by Sodium Chlorat and harvested earlier without any adverse effects on its quality and quantity.


M.r. Tadayon, Y. Emam,
Volume 11, Issue 42 (1-2008)
Abstract

  Photosynthesis and wheat grain yield responses to supplemental irrigation with different amount of applied water under dryland conditions were investigated. Therefore, a two-year field experiment was conducted research farm of College of Agriculture, Shiraz University during 2004-2005. Five levels of irrigation including dryland conditions, irrigation at stem elongation, booting, flowering and grain filling were main plots and two wheat cultivars: Agosta and Fin-15 were subplots, and three rates of nitrogen including zero, 40 and 80 kgha-1 were sub sub-plots. The results showed that in both years, photosynthetic rate, stomatal conductance, substomatal CO2 concentration and transpiration rate, were significantly higher under irrigation at stem elongation stage compared to other supplemental irrigation treatments. In all of the four supplemental irrigation treatments, photosynthetic rate, stomatal conductance, substomatal CO2 concentration and transpiration rate decreased with decreasing the amount of applied water to each plot. In both years, the highest grain yield was obtained from supplemental irrigation at stem elongation stage, and the lowest yield was harvested at dryland conditions. The highest photosynthetic parameters, yield and yield components were obtained from interaction of supplemental irrigation at stem elongation stage × Fin-15 and 80 kg N ha-1 in both years. The supplemental irrigation in 2004 and 2005 increased the grain yield 200 and 221 percent, respectively, compared to dryland conditions. Thus, supplemental irrigation at sensitive stem elongation stage could affect significantly wheat grain yield of rainfed wheat cultivars and provision of adequate water for a supplemental irrigation at the appropriate growth stage could double the grain yield of rainfed wheat.


E. Farahani , A. Arzani,
Volume 11, Issue 42 (1-2008)
Abstract

  An experiment was conducted to investigate the heterosis in 12 F1 hybrids of durum wheat using agronomic and morphological traits. Parents were selected according to the estimated genetic distances based on the results of a two-year field experiment, which were then crossed to produce F1 hybrids. Twenty-three genotypes (including 11 parents and 12 hybrids) were evaluated using a randomized complete block design with three replications Research Farm of College of Agriculture, Isfahan University of Technology, located at Lavark, Najaf- Abad in 2003. Agronomic characteristics comprised days to 50% flowering, days to 50% pollination, days to maturity, plant height, spike length, grain weight per spike, number of grain per spike, number of spike per m2, 1000-grain weight, biological yield, grain yield and harvest index. The results of analysis of variance showed significant differences among parents F1 hybrids and parents vs. crosses for all the studied traits. Substantial differences in the level of heterosis for plant maturity were detected among the hybrids with the highest heterosis belonging to HPI40100×PI40099 and HEupoda6× Chahba88 hybrids. Furthermore, superior hybrids included HAltar84/Ald×Chahba88, HBuchen7×Chahba88 and HEupoda6×Mexi75/Vic possessing the highest heterosis for grain yield and grain yield components among 12 hybrids of the present experiment. Eventually, it is concluded that Eupoda6, Odin12, Altar84/Ald and 45063Karaj genotypes when crossed with Mexi75/Vic genotype as well as Buchen7 and Altar84/Ald genotypes when crossed with Chahba88 genotype produced superior F1 hybrids.


H. Amanlou, D. Zahmatkesh, A. Nikkhah,
Volume 12, Issue 43 (4-2008)
Abstract

24 Holstein cows and 16 Holstein heifers in close-up period were used to evaluate the effects of ground wheat grain in prepartum diets on health and performance of dairy cows. Cows were blocked based on parity (three groups) and then randomly assigned to two experimental diets. Study rations included a treatment containing wheat with 1.62Mcal/kg NEL, 14.8%CP, 42.1%NFC, and –64meq/Kg DCAD and another treatment was composed of barley and wheat bran with 1.59Mcal/kg NEL, 14.8%CP, 38.2%NFC, and –48meq/Kg DCAD. Cows were fed experimental diets in group, on average 24%4 days prior to parturition, and they were fed the same ration up to day 21 postpartum. Average feed intake prior to confining, milk yield and composition, blood metabolites, feeding and chewing activity, urine and feces pH, placenta weight and time of its omitted, pregnancy duration, parturition status, body weight and BCS, and metabolic disorders were evaluated in this research. Average feed intake for wheat treatment was more than barley and wheat bran treatment (11.56 in contrast to 10.74, Kg DM), but it was not statistically significant. Milk production in wheat treatment had no significant increase. Milk fat yield in wheat treatment had a higher value compared to barley and wheat bran treatment (P<0.025). Blood calcium in wheat treatment was significantly higher (P<0.005), and blood glucose in wheat treatment was significantly higher than barley and wheat bran treatment (P<0.011). Changes in body weight and BCS, pregnancy duration and parturition status were not significantly different between treatments. Urine pH in wheat treatment had a significant decrease in the last week prior to parturition (P< 0.003).
M. Dehghanian, M. Madandoost,
Volume 12, Issue 45 (10-2008)
Abstract

In order to investigate the effect of zinc - chelate on drought tolerance of Azadi cross wheat, a randomized complete block design was conducted as split plot with three replicates in the Kherameh during 1383 - 1384. The main plot was four drought levels (control and drought stress in the stages of flowering, seed milk stage and two phases, together), and sub plot was zinc - chelate rates 0, 5, 10 & 15 kg per hectare. The results showed that zinc application under drought conditions increased spike per square meter significantly at the 5% level. Drought stress decreased 1000 - seed weight. Least of 1000 - grain weight was in two phases of flowering and seed milk stage together (29.78 g). The application of 15kg zinc -chelate fixed 1000 - seed weight. Treatments of drought stress decreased seed yield significantly (14.17% in the proportion of control), but zinc - chelate application increased wheat tolerance to seed yield decrease. Zinc - chelate application prevented from seed number decrease per wheat spike under drought conditions that was caused to tolerance of seed yield and harvest index decrease. The application of 15 kg zinc - chelate increased harvest index in comparison of control amount of 22%.
M. Bayat, B. Rabiei, M. Rabiee, A. Moumeni,
Volume 12, Issue 45 (10-2008)
Abstract

To study relationship between grain yield and important agronomic traits of rapeseed in paddy fields as second culture, fourteen varieties of spring rapeseed were grown in a randomized complete block design of experiment with three replications at Rice Research Institute of Iran, Rasht, during 2005-2006. Analysis of variance showed that there were significant differences between varieties for most of traits. Broad sense heritability ranged from 0.29 for pod length to 0.99 for days to maturity. Phenotypic and genotypic coefficients of variation for days to maturity and the number of pods in secondary branches were the lowest and highest, respectively. Moreover, genetic advance with 5% of selection intensity varied from 3.68% (0.25 cm) for pod length in main branch to 31.48% (915.58 Kg.ha-1) for grain yield. Results from genotypic correlation coefficients demonstrated that there were positive significant correlations between grain yield and the number of secondary branches, the number of pod in main and secondary branches, pod length in secondary branches, pod diameter in main and secondary branches, 1000-grain weight and oil percentage, and negative significant correlations between grain yield and days to 90% of flowering and days to maturity. Path analysis on genotypic correlations for grain yield as a dependent variable and the other traits as independent variables showed that the 1000-grain weight and the number of pods in secondary branches had the highest direct effects and days to 90% of flowering had low and negative direct effect on grain yield. Therefore, indirect selection for increasing 1000-grain weight and the number of pods in secondary branches are recommended for improving grain yield in rapeseed as second culture in paddy fields.
M. R. Tadayon,
Volume 12, Issue 45 (10-2008)
Abstract

In order to investigate the effect of sugar plant effluent on shoot solute percentage, yield components and grain yield of two wheat cultivars, a two year field experiment was conducted on a farm near Eghlid sugar plant during 2004-2005. Treatments consisted of two wheat cultivars (Alamot and Zarin) and two irrigated treatment: irrigation with effluent and irrigation with spring water (control). The statistical design was a completely randomized factorial with three replications. The results showed that under effluent treatment, nitrogen, phosphorus and calcium percentage increased in shoot, and Fe, Mn, Zn, Cu and B concentration decreased. However, effluent treatment had not any significant effect on K, Mg and S concentration. The results showed that N percentages in Alamot and Zarin cultivar under control treatment were 2.41 and 2.54% and under effluent treatment were 3.28 and 3.41%, respectively. P percentages under control treatment were 0.42 and 0.47% and under effluent treatment were 0.46 and 0.51%, respectively. Ca percentages under control treatment were 0.29 and 0.32% and under effluent treatment were 0.46 and 0.51%, respectively. In both years, the lowest number of tiller, number of spike, number of kernel per spike, thousand kernel weight, grain yield and harvest index were obtained from effluent treatment in the two wheat cultivars whereas this reduction was higher in Alamot than Zarin cultivar. In Alvand and Zarin cultivars, the lowest number of tiller per plant with 2.33 and 2.50, number of spike per plant with 1.83 and 1.92, number of kernel per spike with 31.67 and 32.50, grain yield with 5233 and 5532 kg ha-1 and harvest index with 32.03 and 33.53% and water productivity with 0.72 and 0.75 kg m-3 were respectively obtained from effluent treatment compared to control. Thus, the results showed that using sugar plant effluent could decrease grain wheat quality and wheat grain yield.
Kh. Malekzadeh, F. Shahriari, M. Farsi , E. Mohsenifard,
Volume 12, Issue 45 (10-2008)
Abstract

Kernel hardness is one of the most important characterizations on end-use quality of bread wheat and also used for their marketing classification. Kernel texture, mainly controlled by one major locus (Ha) located on the short arm of chromosome 5D. Two tightly linked genes as puroindolin a , and b covered by this major locus and designed as Pina and Pinb respectively. When both puroindolines are in their ‘functional’ wild state, grain texture is soft. When either of the puroindoline alleles is absent or alter by mutation, then the result is hard texture. In this study, 61 Iranian commercial cultivars and 92 landraces were investigated for their kernel hardness and puroindoline alleles using SKCS and, PCR and cleaved amplified polymorphic sequences (CAPS) techniques respectively. Specific primers were used to amplify Pina and Pinb. The results indicated that frequency of hard, mixed and soft genotypes were 65.6, 19.6 and 14.8% respectively, in commercial cultivars and 58.7, 13 and 28.3% in landraces varieties. Among hard type of commercial cultivars, 18 and 5, genotypes have identified as Pina-D1b and Pinb-D1b respectively. Kavir was only cultivar with Pinb-D1e allele. Pinb-D1b allele was identified in two hard types of landrace varieties. Surprisingly, Pinb-D1c was not found in any varieties. Influence of the above proindoline alleles on kernel hardness showed that the SKCS hardness index of Pina-D1b was significantly higher than that of Pinb-D1b. Our knowledge about the genetic basis of kernel hardness could provide useful information in breeding programs of bread wheat.
A. Moradi, A. Ahmadi , A. Hossein Zadeh,
Volume 12, Issue 45 (10-2008)
Abstract

Drought is a major factor limiting growth and development of crops such as mung bean (Vigna radiate (L.) wilczek) in arid and semi-arid regions of the world. This study was conducted to investigate the effects of different timing and severity of drought stress on physiological traits of mung bean and its relation to grain yield. A field experiment was carried out during 2004 growing season at Experimental Farm of Agriculture College, University of Tehran, Karaj, Iran. The treatments were laid out in a Randomized Complete Block Design (RCBD) with three replications. Plants were exposed to moderate and severe water stresses at either vegetative (VS) or reproductive stages (RS). Physiological traits were measured at the end of vegetative and the middle of pod formation. Generally water stress reduced leaf net photosynthesis rate, stomatal conductance and leaf relative water content at different growth stages. The effects of RS treatments were more severe than that of VS one. Severe VS treatment increased photosynthetic water use efficiency, whereas RS treatments decreased it significantly. However, leaf area index and total dry matter were more responsive in VS compared to RS treatments. VS treatments did not affect harvest index, while RS treatments reduced it significantly. Drought stress also reduced grain yield by 9 and 49 % (relative to control plants) in severe VS and severe RS treatments, respectively. Therefore irrigation is critical during reproductive stage mainly because of the higher demand for photoassimilate. It is concluded that to maximize mung bean grain yield in arid and semi-arid areas, appropriate watering should be practiced across all phenological stages in general, and during reproductive stage in particular.
M Gorji, H Eshghizadeh, A Khosh Goftarmanesh, A Ashrafi, A Moalem, N Poursakhi, N Pourghasemian, A Miladi,
Volume 12, Issue 46 (1-2009)
Abstract

Iron deficiency is a worldwide nutritional constraint in agricultural lands especially in calcareous soils. Cultivation of crops tolerant to Fe-deficiency is an approach to combat Fe deficiency. The aim of this investigation was to evaluate Fe-efficiency of selected important crops in Iran. A completely randomized block design in triplicates was conducted at IUT research greenhouse in fall 2006. Sweet corn (Hybrid K.S.C. 404), grain corn (Hybrid S.C. 500), safflower (cvs. S3110, S-411), sunflower (Hybrid Hyson) and durum wheat (cv. Shuga) were grown in a nutrient solution at two Fe levels (1 and 10 µM Fe-EDTA). The results showed significant (P < 0.01) variation among the studied crops in Fe-efficiency. Corn hybrids were more sensitive to Fe deficiency (FeE = 26%) as compared to other studied crops, and the greatest reduction was observed in their shoot dry matter at 0.1 mM Fe- EDTA treatment. In contrast, the lowest decrease in root and shoot dry matter weight under Fe-deficient condition was found for durum wheat (FeE=94%). Comparing the calculated Fe-efficiency using different indices showed that Fe concentration and content in the whole plant, shoot and root had no relationship with crop tolerance to Fe deficiency.
M Babaeian, M Haydari, A Ghanbari,
Volume 12, Issue 46 (1-2009)
Abstract

In order to study the effects of foliar micronutrient application under water stress at three stages of growth on proline and carbohydrate concentrations, grain yield and yield components of sunflower (Alster cultivar), a field experiment in split plot design with three replications was conducted in 2007. Alster cultivar was considered under water stress at three stages of growth (heading, flowering and grain filling) as main plot and seven micronutrient treatments, Fe, Zn, Mn, Fe+Zn, Fe+Mn, Zn+Mn and Fe+Zn+Mn, as sub plots. Results showed, water stress at three stages of growth significantly decreased grain yield, biological yield, 1000 weight seeds, cap diameter and cap weight of sunflower (Alster cultivar). The impact of water stress was more pronounced when applied at grain filling. Use of foliar micronutrient increased grain yield in water stress. On the other hand, use of Mn foliar application had the highest positive effect on yield components and grain yield. Free proline and total soluble carbohydrate concentration were increased under water stress at all of the three stages of growth. The highest concentration of these two components was found on the flowering stage. Foliar micronutrient also increased accumulation of the two components.
A Ahmadi, M Jodi, A Tavakoli, M Ranjbar,
Volume 12, Issue 46 (1-2009)
Abstract

The objective of this study was to evaluate some morphological characteristics associated with grain yield potential on 20 bread wheat cultivars under two irrigation and drought stress conditions. The experiments were conducted at Research Farm of Agriculture College, University of Tehran, Karaj during 2001-2003. Twenty bread wheat cultivars were planted as subplots within each irrigation main plots in randomized complete block design with 3 replications. Drought stress was imposed at the end of flowering, and plants were re-watered when they showed signs of wilting, particularly during the morning. The results showed that the interactions between cultivars × year and cultivars × irrigation were significant for the grain yield. The cultivars showed significant differences in grain yield under drought stress condition in 2001-2003. Roshan, M-79-4 and Alvand in 2001-2002 and Azadi, Marvdasht and M-79-17 in 2002-2003 were most productive under drought stress condition, whereas C-79-12, MV-17 and Shahpasand in 2001-2002 and M-79-4, Roshan and Nicknajad in 2002-2003 performed visa versa. Correlation between grain yield and measured traits under irrigation condition was different from drought stress condition, suggesting that grain yield controlling mechanisms operate differently under these conditions. Drought stress caused a reduction in 1000 seed weight of cultivars. High 1000 seed weight and high grain number per ear were accompanied by high grain yield in drought stress and irrigation conditions, respectively. In the present study, clear relationship between grain yield and ear length was not observed.
Z Daneshvar Ran, M Esfahani, M Payman, M Rabiei, H Samie Zadeh,
Volume 12, Issue 46 (1-2009)
Abstract

The effects of tillage methods and residual management on yield and yield components of rapeseed (Brassica napus L. CV. Hyola308) were evaluated after rice harvest. The experiment was carried out during 2004-2005 cropping season in a factorical arrangement of treatments at Rice Research Institute of Iran (RRII) in Rasht, in a Complete Randomized Block Design with three replications. Treatments included tillage in three methods: a) conventional tillage b) minimum tillage, and c) no tillage, and rice residue management in two manners: a) removing residues, and b) not removing residues. Plant traits such as grain yield, oil percentage and yield, plant density, plant height, the lowest pody branch height from soil surface, number of pods per plant, plant and weed dry weight, leaf area index (LAI) and crop growth rate (CGR) were measured. Results indicated that grain yield was affected by the tillage type. Also, the effect of tillage type on plant height, number of pods per plant, the lowest pody branch height from soil surface, and oil yield was significant. The effect of residual management and residual management interaction and tillage were significant on none of the traits except for weed dry weight. Economic analysis indicated that rapeseed planting in a field with rice residual and minimum tillage had a relative advantage of less production cost in spite of nearly 15 percent yield decrease compared to other methods.
Sh Kiani, N Babaeeian Jelodar, Gh Ranjbar, S.k Kazemi Tabar, M Norouzi,
Volume 13, Issue 47 (4-2009)
Abstract

In order to study gene action in rice for traits related to quality (gelatinization temperature, gel consistency and amylose content), four varieties of rice (Sang-e-Tarrom, Gerdeh, IRRI2 and IR229) were investigated. Ten different generations including P1, P2, F1, RF1, BC1, RBC1, BC2, RBC2, F2 and RF2 were evaluated using generation mean analysis. In generation mean analysis, one of non-allelic interaction components, [i], [j]1, [j]2, [l]1, [l]2, [l] was significant indicating the genetic model of these characters were described by additive-dominance model with non-allelic gene interaction (except for gelatinization temperature trait in Sang-Tarrom × Gerdeh cross). The cross IRRI2×IR229 showed duplicate epistasis for gel consistency trait. Cytoplasmic effects and interactions between cytoplasmic and nuclear effects in two crosses were significant for amylose content and gel consistency traits. The estimation of narrow and broad-sense heritability for two crosses were 0.77 to 0.99 and 0.05 to 0.93, respectively. The predominantly additive nature of the genetic variability was further revealed by the variance components. Component D was detected significant in all the crosses. The covariance component and , however, showed indirectly that dominance contributed significantly to variability at the variance level. Therefore, according to the obtained results, selection can be effectively done in later segregation generations for gel consistency and amylose content and in early generation for traits.
S Safae Chaykar, H Samie Zade, M Esfahani, B Rabiei,
Volume 13, Issue 48 (7-2009)
Abstract

In order to study the correlation of agronomic, morphologic and physiologic traits and their effects on grain yield of rice genotypes in two environments (favorable irrigation and water stress), 49 genotypes were evaluated using a completely randomized block design with 3 replications in two experimental conditions. All practices and conditions were the same for the two experiments with the exception of irrigation, where under stress conditions no irrigation was applied at tillering stage. Comparison of means showed significant differences between genotypes in each environment. Also, differences between yield and yield components of each genotype under two conditions were significant. The results of phenotypic correlations showed that the highest positive and significant correlation with grain yield belonged to number of panicle per plant (0.95) in irrigation conditions and to number of filled grains per panicle (0.92) in water stress conditions. Stepwise regression analysis for grain yield introduced number of panicle per plant, relative water content (RWC), flag leaf length and number of spikelet per panicle, respectively, as effective traits in grain yield in irrigation conditions, however, in stress conditions, number of filled grain per panicle, number of panicle per plant and relative water content were effective traits in yield. The results of path analysis showed that the number of panicle per plant had the highest positive and direct effect on grain yield in the two environments. Factor analysis introduced four factors in the two conditions named yield and crop production, phenologic, harvest index and plant shape and appearance quality of grains factors. Therefore, to select high yield and drought tolerant genotypes, we need to consider number of filled grain per panicle, number of panicle per plant and relative water content. In addition, traits such as panicle length, number of spikelet per panicle, flag leaf length and width that showed significant correlations with grain yield in stress conditions should also be considered important and second to the above mentioned traits.
R. Taghizadeh, R. Seyed Sharifi,
Volume 15, Issue 57 (10-2011)
Abstract

In order to evaluate the effects of nitrogen fertilizer levels on grain yield and nitrogen use efficiency in corn cultivars, a split plot experiment based on randomized complete block design with three replications was conducted at the Research Farm of Islamic Azad University of Ardabil during 2006-2007 cropping seasons. Factors consisted of nitrogen fertilizer at four levels (0, 80, 160 and 240 kg/ha) and corn cultivars at three levels (SC-310, SC-404 and DC-370). The results showed that grain yield was significantly affected by nitrogen levels, corn cultivar and nitrogen level × corn cultivars. The highest grain yield was related to application of 240 kg/ha nitrogen with SC-404 cultivar. Nitrogen levels of 160 and 240 kg/ha had similar yields, but more yield than 80 kg/ha. With increasing of nitrogen levels, plant height, the number of grains per ear rows significantly increased. Comparisons of means showed that increasing the application of nitrogen fertilizer decreased nitrogen use efficiency. Nitrogen use efficiency decreased from 17.13 kg/kg with application of 80 kg/ha nitrogen fertilizer to 12.4 kg/kg in application of 240 kg/ha nitrogen fertilizer. Nitrogen use efficiency was affected by corn cultivar. Nitrogen use efficiency in SC-404 was higher than SC-301. In conclusion, in order to increase grain yield and nitrogen use efficiency, SC-404 hybrid should be applied with 160 kg N/ha in climatic conditions of Ardabil Plain.
M. Rabiee, M. Kavoosi, P. Tousi Kehal,
Volume 15, Issue 58 (3-2012)
Abstract

To determine the proper nitrogen fertilizer rates and its application times for achieving high grain and oil yields of rapeseed cultivar, Hyola 401, a research was carried out in paddy fields of Rice Research Institute of Iran in Rasht during two cropping seasons. A factorial experiment was conducted in a completely randomized block design with three replications. The experimental factors were pure nitrogen fertilizer rate at five levels of 0, 60, 120, 180 and 240 Kg ha-1 and fertilizer application times at five levels of all fertilizer at planting 1/3 at planting + 2/3 in stem elongation 1/3 at planting + 1/3 in stem elongation + 1/3 before flowering 1/3 in 3-4 leaf stages + 1/3 in stem elongation +1/3 before flowering 1/4 at planting + 1/4 in 3-4 leaf stages + 1/4 in stem elongation + 1/4 before flowering. The results of statistical analyses showed that from amony nitrogen rates, application of 240 Kg N ha-1 and 180 Kg N ha-1 with average production of 2505 Kg ha-1 and 2596 Kg ha-1 respectively showed the highest grain yield and were in the same group. of Nitrogen application times, application of 1/3 at planting + 1/3 in stem elongation + 1/3 before flowering had the highest grain and oil yields with average of 2155.3 Kg ha-1 and 9865 Kg ha-1, respectively. Maximum oil percentage was observed in control treatment (without N-fertilizer application) and the highest oil yield was obtained for nitrogen rates of 180 and 240 Kg ha-1. Also, the highest growth period was observed for the treatment of 240 Kg nitrogen with 206.3 days. The results showed that nonsignificant difference exists between the nitrogen rates of 180 and 240 Kg ha-1 in grain and oil yields. Therefore, the rate of 180 Kg ha-1 is recomended due to less fertilizer consumption and prevention of destructive effect on the environment
R. Bagheri, Gh. Akbari, M. H. Kianmehr, Z. Tahmasebie Sarvestani,
Volume 16, Issue 59 (4-2012)
Abstract

To evaluate the effect of nitrogen slowly released from pellet, composed of manure and urea fertilizer on the Nitrogen efficiency and morphological Characteristics and grain yield of corn hybrid (S.C704), a field experiment was carried out in Aboureihan research farm of Tehran University in 2009. The factorial design of the study comprised a randomized complete block with three replications. The application rates of N at four levels (46, 92, 138 and 184 kg N. ha-1) and two levels by methods of N distribution (pellet and mixed with soil) were applied. In this research, a Screw Extruder setup was designed and manufactured. Statistical analysis indicated that NUE, as well as agronomic efficiency (AE) was reduced while physiological efficiency (PE) increased with increasing N rates. Also, most plant length and stem diagonal and cob diagonal pellet belonged to the treatment. But, the number of leaves per plant did not affect the distribution method of fertilizer.The results showed significant differences among various rates of nitrogen and methods of N distribution considering grain yield and grain protein. The higher rates of N increased grain protein, grain yield and yield components (except for number of rows per ear). Maximum grain yield (11.1 t. ha-1) was obtained with 184 kg N. Ha-1 treatment.
Y. Habibzadeh, M. R. Zardoshti, A. Pirzad, J. Jalilian,
Volume 16, Issue 60 (7-2012)
Abstract

To evaluate effect of different irrigation regimes and mycorrhizal fungi on the growth and yield of mungbean NM92 [Vigna radiata (L.) Wilczk], a field experiment was conducted in split plot arrangements using randomized complete block design (Irrigation after 50, 100, 150 and 200 mm evaporation from pan class A as main plots and mycorrhiza species, Glomus mosseae, G. intraradices and a non-inoculated treatment as sub-plots) with three replications at the Research field of Urmia university in 2009. Results showed that irrigation after 50mm evaporation from pan class A, and plant inoculated with G. intraradices produced the highest grain yield (1678.5 kg/ha and 1537.6 kg/ha, respectively), total dry weight, leaf dry weight, leaf area index, crop growth rate, relative growth rate and net assimilation rate. In Contrast, irrigation after 200 mm evaporation from class A pan and non-inoculated treatment produced the lowest grain yeild (1159.2 and 1301.9 kg/ha, respectively). Reducing the irrigation distance led to an increase in total dry weight, leaf dry weight, leaf area index, crop growth rate, relative growth rate and net assimilation rate. Despite lower grain yield in water deficit condition, AM fungi inoculation significantly reduced the effect of stress on grain yield. All inall, both mycorrhizae species significantly (P 0.05) increased the grain yield of mungbean under well-watered and water deficit conditions
S. Jafari, Z. Iranshahi , Gh. Fathi, S. A. Syadat,
Volume 16, Issue 61 (10-2012)
Abstract

Cadmium is a toxic element in plant nutrition and is considered as a contaminant of food and feed. A greenhouse experiment was carried out to examine the effects of combined application of cadmium and zinc on responses of wheat on a clay loam soil texture. This experiment was designed in a factorial experiment with randomized complete block design (RCBD) and four replicates per treatment. Three levels of cadmium (Cd 0, Cd 50 and Cd 100 mg kg-1) and three levels of zinc (Zn 0, Zn 50 and Zn 100 mg kg-1) were added to the pot in factorial(9 treatments), and then Chamran seed variety of wheat (triticum aestivum L.) was planted in each pot. The statistical analyses showed that Cd application significantly (P0.01) decreased grain, straw, and total yield, but Zn application increased these parameters significantly (P0.01). Application of Cd separately decreased the grain yield by 61.5 while application of Zn separately increased the grain yield by 36.9. Cd application increased the Cd concentration and uptake by grain and straw as well as total uptake but by increasing Zn application, Cd uptake was decreased by wheat. Cd concentration was higher in straw than that grain, but Zn showed a different trend. Decreasing Zn applications decreased total uptake of Cd from 42.9 in Zn0 to 7.8 mg kg-1 in Zn100 treatment. Although this soil was very calcareous, this characteristic did not control Cd absorbtion.

Page 2 from 3     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb