Search published articles


Showing 23 results for Safflower

M Gorji, H Eshghizadeh, A Khosh Goftarmanesh, A Ashrafi, A Moalem, N Poursakhi, N Pourghasemian, A Miladi,
Volume 12, Issue 46 (1-2009)
Abstract

Iron deficiency is a worldwide nutritional constraint in agricultural lands especially in calcareous soils. Cultivation of crops tolerant to Fe-deficiency is an approach to combat Fe deficiency. The aim of this investigation was to evaluate Fe-efficiency of selected important crops in Iran. A completely randomized block design in triplicates was conducted at IUT research greenhouse in fall 2006. Sweet corn (Hybrid K.S.C. 404), grain corn (Hybrid S.C. 500), safflower (cvs. S3110, S-411), sunflower (Hybrid Hyson) and durum wheat (cv. Shuga) were grown in a nutrient solution at two Fe levels (1 and 10 µM Fe-EDTA). The results showed significant (P < 0.01) variation among the studied crops in Fe-efficiency. Corn hybrids were more sensitive to Fe deficiency (FeE = 26%) as compared to other studied crops, and the greatest reduction was observed in their shoot dry matter at 0.1 mM Fe- EDTA treatment. In contrast, the lowest decrease in root and shoot dry matter weight under Fe-deficient condition was found for durum wheat (FeE=94%). Comparing the calculated Fe-efficiency using different indices showed that Fe concentration and content in the whole plant, shoot and root had no relationship with crop tolerance to Fe deficiency.
N Pourghasemin, M Zahedi,
Volume 13, Issue 47 (4-2009)
Abstract

This experiment was conducted at the Agricultural Research Station of Isfahan University of Technolgy in 2006 to evaluate the effects of planting pattern and the level of soil moisture on two safflower cultivars. A factorial split plot arrangement was used in a randomized complete block design with three replications. Two planting patternS (flat and bed planting) and two levels of soil moisture (irrigation after 80 and 100 mm cumulative evaporation from Class A pan) were considered as the main factor and two safflower cultivars (IL 111 and Kosseh) as minor factor. Each plot in flat planting consistedof six rows, spaced 25 cm apart with plants 8 cm apart and in bed planting consisted of four rows, spaced 45cm apart with plants 5 cm apart. The duration from planting to button formation, 50% flowering, and 100% flowering stage were significantly shorter in 45cm bed planting than in 25cm flat planting. The duration from planting to all growth stages was less in IL 111, compared to Kosseh cultivar. The level of soil moisture did not affect the duration of any growth stages. Plant height, leaf area index, plant dry matter, number of buttons per plant, number of grains per button, grain weight, and harvest index were higher in flat planting, compared to bed planting. Plant height, plant dry matter, number of buttons per plant, number of grains per button, grain weight, and harvest index were reduced as the level of soil moisture was decreased. Leaf area index and plant dry matter were not significantly affected by the level of soil moisture at 50% flowering stage. Regardless of the level of soil moisture and cultivar, the grain yield was 36% more in flat planting than bed planting. The grain yield was more at higher level of soil moisture and also in Kosseh than in IL 111. The oil percentage and oil yield was higher in flat planting, compared to bed planting and also in Kosseh than in IL 111. The oil percentage was not significantly affected by the level of soil moisture. However, the oil yield was decreased as the level of soil moisture was reduced. The highest amount (1168 kg/ ha) of oil yield was obtained from Kosseh in flat planting and the lowest amount (417 kg/ ha) was achieved from IL 111 in bed planting. The results from this experiment show that to obtain the optimum yield from summer planting in areas with similar conditions to that of this study the 25cm flat planting compared to the 45cm bed planting, and Kosseh compared to IL 111 cultivar seems to be superior.
M Gorgi, M Zahedi, A. H Khoshgoftarmanesh2,
Volume 14, Issue 53 (10-2010)
Abstract

An experiment was conducted in order to evaluate the effects of increased concentration of potassium and calcium in hydroponic nutrient solution on the response of safflower to salinity. The experiment was carried out in a glasshouse using a completely randomized design. Four saline treatments (Johnson solution containing 100 mM of NaCl, Johnson solution containing 100 mM of NaCl + 10 mM potassium, Johnson solution containing 100 mM of NaCl + 5 mM calcium, Johnson solution containing 100 mM of NaCl + 10 mM potassium + 5 mM calcium) and Johnson solution without any addition of salt as control. Leaf area per plant, shoot and root dry matter was decreased in saline treatments. The concentration of potassium and calcium in the plants were decreased but those of sodium were increased at salinity. The extent of shoot and root dry mater reduction with salinity was less in saline treatment with additional calcium alone. The addition of potassium into the nutrient solution could not mitigate the negative effects of salt stress on the plants. Increasing the concentration of both potassium and calcium in saline nutrient solution resulted in a greater reduction of shoot dry matter. The results showed that the negative effects of salinity may be alleviated by increasing the concentration of calcium in nutrient solution.

Page 2 from 2     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb