Search published articles


Showing 28 results for Abedi koupai

M. Javaheri Tehrani, S. F. Mousavi, J. Abedi Koupai, H. Karami,
Volume 24, Issue 2 (Summer 2020)
Abstract

In the last few decades, the use of porous concrete to cover the sidewalks and pavements as an interface to collect the urban runoff has been increased. This system is economically more efficient than other runoff-pollution reduction methods. To design a runoff control system and reduce its pollution, it is necessary to determine the hydraulic and dynamic properties of the porous concrete (with and without additives). In this research, the effects of cement type (2 and 5), water to cement ratio (0.35, 0.45 and 0.55), fine grains percent (0, 10 and 20%), the type of additive (pumice, industrial pumice, perlite and zeolite), and the added additive percent (5, 10, 15 and 20%) on the physical properties of the porous concrete (porosity, hydraulic conductivity and compressive strength), each with three replications,  were  investigated using robust design. Qualitek-4 software was also used to discuss the results. The results showed that to obtain the highest porosity in the mixing scheme of the porous concrete, no fine grains, cement type 2 and 15% industrial pumice should be used, and water to cement ratio should be 0.35. Also, the water to cement ratio of 0.55, 0% fine grains, type 2 cement and 15% industrial pumice resulted in the highest value of hydraulic conductivity in the porous concrete. Finally, the water to cement ratio of 0.55, 20% fine grains, type 2 cement and 5% zeolite led to the maximum compressive strength. In general, it was not possible to reach a logical conclusion in this research with the least costs without employing the robust design.

M.m. Matinzadeh, J. Abedi Koupai, M. Shayannejad, A. Sadeghi-Lari , H. Nozari,
Volume 25, Issue 4 (Winiter 2022)
Abstract

Using water and fertilizer management at the farm level can be increased water use efficiency and reduce the volume of drainage water, fertilizer losses, and other pollutants in farmland with deep underground drains such as Khuzestan agro-industrial Companies. In the present study, a comprehensive simulation model for the water cycle and the nitrogen dynamics modeling was used for water and fertilizer management modeling on farmland of sugarcane in Imam Agro-Industrial Company using a system dynamics approach. To reduce irrigation water consumption and nitrogen fertilizer losses, five different scenarios were considered including four scenarios of water management consist of 5, 10, 15, and 20 percent reduction in the amount of irrigation water (I1, I2, I3, and I4) compared to the current situation of irrigation in Imam agro-industrial Company (I0), and one scenario of integrated water and fertilizer management (20% reduction in the amount of irrigation water and urea fertilizer 210 Kg/ha, I4F). The results of modeling showed that the scenario of I4F caused to reduce 31, 70, 71, 70, and 85 percent of the cumulative volume of drainage water, cumulative nitrate and ammonium losses, total losses of cumulative nitrate, and ammonium by tile-drain and cumulative losses of denitrification process, respectively. Thus, the implementation of this scenario, not only saves water and fertilizer consumption but also reduces environmental pollution effectively. So the scenario of I4F (amount of irrigation water for six months 2656 mm and urea fertilizer 210 Kg/ha) is recommended for sugarcane in the Imam agro-industrial Company.

N. Pourabdollah, J. Abedi Koupai, M. Heidarpour, M. Akbari,
Volume 25, Issue 4 (Winiter 2022)
Abstract

In this study accuracy of the ANFIS and ANFIS-PSO models to estimate hydraulic jump characteristics including sequence depth ratio, the jump length, the roller length ratio, and relative energy loss was evaluated in stilling basin versus laboratory results. The mentioned characteristics were measured in the stilling basin with a rectangular cross-section with four different adverse slopes, four diameters of bed roughness, four heights of positive step, three Froude numbers, and four discharges. The average statistical parameters of NRMSE, CRM, and R2 for estimating hydraulic jump characteristics with the ANFIS model were 0.059, -0.001, and 0.989, respectively. While, the mean values of these parameters for the ANFIS-PSO model were 0.185, 0.002, and 0.957, respectively. The results indicated that these models were capable of estimating hydraulic jump parameters with high accuracy. However, the ANFIS model was moderately more accurate than the ANFIS-PSO model to estimate the sequence depth ratio, the jump length, the roller length ratio, and relative energy loss.

J. Abedi Koupai, A.r. Vahabi,
Volume 27, Issue 2 (Summer 2023)
Abstract

Awareness of water resources status is essential for the proper management of resources and planning for the future due to the occurrence of climate change in most parts of the world and its impact on different parts of the water cycle. Hence, many studies have been carried out in different regions to analyze the effects of climate change on the hydrological process in the coming periods. The present study examined the effects of climate change on surface runoff using the Atmosphere-Ocean General Circulation Model (AOGCM) in Khomeini Shahr City. The maximum and minimum temperatures and precipitation of the upcoming period (2020-2049) were simulated using a weighted average of three models for each of the minimum and maximum temperatures and precipitation parameters based on the scenario A2 and B1 (pessimistic and optimistic states, respectively) of the AOGCM-AR4 models. The LARS-WG model was also used to measure the downscaling. The HEC-HMS was used to predict runoff. The effects of climate change in the coming period (2020-2049) compared with the observation period (1971-2000), in the A2 scenario, the minimum and maximum temperatures would increase by 1.1 and 1.6 Degrees Celsius, respectively, and the precipitation would decrease 17.8 percent. In the B1 scenario, the minimum and maximum temperatures would increase by 1.1 and 1.4 degrees Celsius, respectively, and the precipitation would decrease by 13 percent. The results of runoff were different in the six scenarios in the way the most runoff reduction is related to the scenario of fixed land use and scenario A2 (22.2% reduction), and the most increase is related to the scenario of 45% urban growth and scenario B1 (5.8% increase). So, according to increase urban texture in the future and consequently enhance the volume of runoff, this volume of runoff can be used to feed groundwater, irrigate gardens, and green space in the city.

J. Abedi Koupai, A. Chehreraz, F. Dadvand,
Volume 27, Issue 4 (Winter 2023)
Abstract

The scarcity of freshwater resources increases the importance of seawater and brackish water desalination processes. However, a large amount of specific energy requirements, and high operational costs, present a big challenge in adopting desalination technologies. Due to high expenses of energy, desalination of saline waters by low-cost methods is important. The objective of this research was to investigate the ability of two adsorbents (zeolite and graphene oxide) to remove salinity ions from aqueous solutions in Caspian Sea water and water of the well of the Dark zone in Isfahan. At first, some graphene oxide was made according to Homer's method. Then, the characteristics of graphene oxide were known by Fourier transform infrared spectroscopy and using an electron microscope. After that, the ability of adsorbents to remove salinity agent cations and anions was evaluated. To investigate a fixed-bed zeolite column with graphene oxide (GO) layer was used to remove Na+, K+, Ca2+, Mg2+, and Cl from 50 cc of saline water. Also, Hexadecyl trimethylamine (HDTMA) was used to modify natural zeolites. The results showed that among the adsorbents for the water of the well in the Dark zone, 30 mg graphene oxide with 13 gr zeolite had the highest adsorption rate (23.84 percent of salinity reduction), and for Caspian Sea water, 13 gr zeolite modified by surfactants had the highest adsorption rate (23.43 percent of salinity reduction). Also, the removal of cations and anion followed the sequence: K+ >Ca2+ >Mg2+ >Cl >Na+.

M. Baki, J. Abedi Koupai,
Volume 28, Issue 1 (Spring 2024)
Abstract

The improvement of water consumption efficiency is very significant, especially in arid and semi-arid regions. In this research, the effects of three hydrogel rates (0, 10, and 50 Mg ha-1) and three irrigation regimes (50%, 70%, and 100% of water requirement) on growth, yield, and oil production of Thymus daenensis were studied in a lysimetric experiment. The process of hydrogel synthesis was performed with sodium alginate as the main bone of the polymer and acrylic acid and acrylamide as monomers with the rapeseed meal biochar was made at 300 ºC. The results showed that the essential oil content produced by the plant was impressed by the hydrogel application. The essential oil content increased with an increase in water deficit, but the essential oil yield decreased in the lysimeters with water deficit compared to the ones without water stress. Besides, the application of 50 Mg ha-1 hydrogel caused a 17% increase in the dry matter and a 12% increase in the plant's height. According to the results of this experiment, the application of hydrogel caused the improvement in most characteristics of the Thymus daenensis in water stress conditions.

V. Rezaei, S. S. Eslamian, J. Abedi Koupai, A. R. Gohari,
Volume 28, Issue 2 (Summer 2024)
Abstract

The relationship between intensity-duration-frequency of rainfall is a significant tool for estimating flood discharge. According to the sparsely available rain gauge stations and the development of technology, it is possible to use satellite rainfall data with different temporal and spatial resolutions. PERSIANN rainfall data with a time resolution of 1 and 6 hours were used in this research. Also, the spatial resolution of these data is 0.04 x 0.04 degrees. Rainfall data from synoptic stations around the Kan basin were also used. Three common continuous probability distributions of Gamble, Pearson type 3, and Log Pearson type 3 with return periods of 2, 5, 10, 25, 50, and 100 years were investigated to calculate and check the IDF curve. In general, the precipitation intensity obtained from Gumble's method was more than Pearson Type 3's method. Log Pearson type 3 distribution did not provide acceptable results in this research. The two interpolation methods of inverse distance weighting and empirical Bayesian kriging were used to generalize the frequency intensity curves to the entire Kan basin. The results showed little difference between these two methods, except for Pearson type 3 probability distribution.

M.a. Abdullahi, J. Abedi Koupai, M.m Matinzadeh,
Volume 28, Issue 3 (Fall 2024)
Abstract

Today, the problems related to floods and inundation have increased, particularly in urban areas due to climate change, global warming, and the change in precipitation from snow to rain. Therefore, there has also been an increasing focus on rainfall-runoff simulation models to manage, reduce, and solve these problems. This research utilized SewerGEMS software to explore different scenarios to evaluate the model's performance based on the number of sub-basins (2 and 8) and return periods (2 and 5 years). Additionally, four methods of calculating concentration time (SCSlag, Kirpich, Bransby Williams, and Carter) were compared to simulate flood hydrographs in Shahrekord city. The results indicated that increasing the return period from 2 to 5 years leads to an increase in peak discharge in all scenarios. Furthermore, based on the calculated continuity error, the Kirpich method is preferred to estimate the concentration-time in scenarios with more sub-basins and smaller areas. For the 2-year return period, a continuity error of 4% was calculated for the scenario with 2 sub-basins, while for the 5-year return period, the continuity error was 19%. On the other hand, the SCSlag method is preferred to estimate the concentration-time in scenarios with fewer sub-basins and larger areas. For the scenario with 8 sub-basins, a continuity error of 16% was calculated for the 2-year return period, and 11% for the 5-year return period.


Page 2 from 2     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb