Search published articles


Showing 43 results for Nutrient

A. Balvaieh, L. Gholami, F. Shokrian, A, Kavian,
Volume 26, Issue 4 (12-2022)
Abstract

Changes in nutrient concentrations of soil can specify optimal management of manure and prevent environmental and water resources pollution. The present study was conducted with the objective of changing macronutrients concentrations of Nitrogen, Phosphorus, and Potassium with amendments application of polyvinyl acetate, bean residual, and a combination of polyvinyl acetate + bean residual for time periods of one, two, and four months. The results showed that the application of soil amendments had various effects on changing Nitrogen, Phosphorus, and Potassium. The maximum amount of Nitrogen related to the treatment of bean residual at the time period of four months before simulation (with a rate of 44.62 percent) and minimum amount of nitrogen related to Polyvinyl acetate treatment at the time period of one month (with a rate of -1.92 percent). The minimum rate of Phosphorus was measured at the treatment of bean residual at the time period of one month before simulation (with a rate of 0.95 percent). The maximum amount of Potassium related to the treatment of Polyvinyl acetate at the time period of four months before simulation (with a rate of 189.35 percent) and the minimum amount of Potassium related to the combination of bean residual + Polyvinyl acetate at the time period of one month after simulation (with a rate of 40.66 percent). Therefore, the application of amendments has various effects on changing soil macronutrients at different time periods.

H.r. Owliaie, A.r. Salehi, Gh.r. Zareian,
Volume 28, Issue 4 (12-2024)
Abstract

The spatial distribution of soil characteristics is a fundamental factor for planning sustainable agriculture. Geostatistical methods are widely used to determine the spatial variability of soil characteristics in unknown locations. This research was carried out to evaluate the geostatistical methods for zoning some characteristics of the Darnagan area including agricultural (crop and horticultural) and pasture land uses in the southwest of Shiraz. 134 surface soil samples were collected with a grid pattern from three different land uses, and some of their fertility characteristics were measured. The results based on precision criteria revealed that exponential co-kriging was the best method for interpolating P, J-Bessel for K and Fe, stable model for Ca and Mn, tetra spherical model for N and Mg, Gaussian model for Zn, and rational quadratic model for Cu. The weak spatial structure was obtained for Zn, medium for N, K, and Mn, and strong for other variables. According to spatial distribution maps, 96, 28, and 24% of the studied area are deficient in nutrients N, P, and K, respectively. Concerning micronutrient elements, 78% and 63% of the region are deficient in Fe and Zn, respectively. The statistical comparison of the studied characteristics indicated a significant difference in P, K, Fe, Mn, Ca, Mg, and CEC amounts in different land uses.

M. Asadi, M. Noshadi, A.r. Noshadi,
Volume 29, Issue 2 (7-2025)
Abstract

In this research, drinking water quality was investigated using acceptability, health, and nutrition-based indicators from 2010 to 2022 in Shiraz City (Fars province). Magnesium, fluoride, and calcium play a significant role in the contribution of drinking water in Shiraz City to the intake of dietary minerals. The acceptability water quality index (AWQI), health-based water quality index (HWQI), and drinking water quality index (DWQI) rankings in Shiraz City are excellent, but the average drinking water nutritional quality index (DWNQI) of Shiraz City is 77.52 ± 5.47, which falls within the good ranking. Therefore, while the conventional water quality indices (AWQI, HWQI, and DWQI) are excellent, the DWNQI index does not achieve an excellent rating, due to the inclusion of the nutritional value of water in the DWNQI index. In general, the trend of AWQI, HWQI, DWQI, and DWNQI over thirteen years in Shiraz City shows that the conventional drinking water quality indices (AWQI, HWQI, and DWQI) do not provide an accurate picture of the assessment of drinking water quality in many cases, as they do not consider the nutritional role of water. For this reason, water is sometimes treated more than necessary. Therefore, it is essential to revise the interpretation of drinking water quality using the DWNQI index to gain a comprehensive picture of drinking water quality.


Page 3 from 3     

© 2025 CC BY-NC 4.0 | Journal of Water and Soil Science

Designed & Developed by: Yektaweb