Search published articles


Showing 62 results for Afyuni

N Barahimi, M Afyuni, M Karami, Y Rezaee Nejad,
Volume 12, Issue 46 (1-2009)
Abstract

Compost and sewage sludge contain high concentration of plant nutrients and, thus, have been used extensively as an inexpensive fertilizer. The objective of this study was to evaluate cumulative and residual effects of compost, sewage sludge and cow manure on nitrogen, phosphorus and potassium in soil and wheat. The experiment included compost, sewage sludge and cow manure, each applied at 3 rates (25, 50 and 100 Mg ha-1), a chemical fertilizer (250 kg ha-1 amonium phosphate + urea) and a control plot with 3 replications. The experimental design consisted in completely randomized blocks with treatments arranged in split plots. To study the cumulative and residual effects of the organic amendments, application was repeated on four fifths of each plot in the second year. Wheat was grown in the plots. The results showed that one application (residual effect) of organic amendments had not significant effect on total N in soil and wheat leaves and stem, but it led to significant increase of available phosphorus and potassium in soil and wheat leaves and stem. Cumulative effects of organic amendments significantly (P≤ 0.05) increased the total N (in 50 and 100 Mg ha-1 Cow manure and 100 Mg ha-1 Compost treatments), available P in all organic treatments and K (in all Compost and Cow manure treatments) in soil. Also, cumulative effects of organic amendments significantly (P≤ 0.05) increased the N (in 100 Mg ha-1 sewage sludge), P (in 100 Mg ha-1 compost) and K (in all organic treatments with the exception of 25 Mg ha-1 Compost) concentrations in leaves and stem.
S Sadr, M Afyuni, N Fathian Por,
Volume 13, Issue 50 (winter 2010)
Abstract

Industrial, agricultural and urban activities have contaminated soil by heavy metals that can also increase concentration of the metals in food chains. This study was carried out in Isfahan province where lots of such activities are in progress. The purpose of this study was to determine spatial variability of Arsenic )As) in Isfahan soils. In this research, the soil samples )0-20 cm) were collected in a stratified random sampling system at about 4 Km intervals in a study area of 6800 Km2. The positions of samples were recorded using a GPS. After laboratory preparation, soil samples were measured for total As. Spatial structures of total As were determined by directional variograms. Spherical model was the best model to describe spatial variability of As. Mean-square error )MSE) and correlation coefficient were used to validate variograms. Distribution map for Arsenic was prepared using the obtained information from element by point kriging method and by using Surfer software. Interpolation in blocks by dimensions of 1000×1000 m was made. The mine effective factors with high concentration of As are parent material, and direction of dominant wind has affected the spread of As in north-west of the study area.
H Shirani, M.a Hajabbasi, M Afyuni , A Hemmat ,
Volume 14, Issue 51 (spring 2010)
Abstract

Tillage systems and organic manures could affect soil physical and mechanical properties. This study was conducted to investigate the impacts of two tillage systems including conventional tillage by moldboard plowing (plowing depth, 30 cm) and reduced tillage by disk plow (plowing depth, 15 cm) and three rates (0, 30 and 60 ton ha-1) of farmyard manure (FYM) on the soil penetration resistance under corn cropping in a split block design with 3 replications. The cone index (CI) decreased with increase of the tillage depth. It is attributable to soil disturbing and loosening of the deeper layers under conventional tillage compared to reduced tillage. This trend, however, was observed only in the first (after treatments’ application and before cropping) and second (the highest rate of vegetative growth) samplings. In the third sampling (after harvest), there were not significant differences between the CI values under two tillage systems in different soil depths. It might be due to soil re-compaction (approaching the pre-tillage state) as well as disappearance of the tillage effects seven month after commencement of the experiment. In fact, the soil mechanical resistance increased with the time indicating soil re-compaction over the growing season. Adding FYM to the surface layer (i.e. 0-10 cm) of ridge soil resulted in significant decrease of soil mechanical resistance compared to control treatment. The CI decreased significantly in the 30 ton ha-1 treatment up to the stage of highest rate of vegetative grow, but the effect on CI was diminished after harvest. However, the decreasing effects of the 60 ton ha-1 treatment on the CI continued to the harvesting time. There were no significant effects of FYM in the soil deeper than 10 cm from the ridge surface and in all of the layers in furrow. The CI did not decrease significantly in the furrow due to negligible effect of manure application for the inter-row position.
M Karimpour, M Afyuni, A Esmaili Sari,
Volume 14, Issue 52 (sumer 2010)
Abstract

Sewage sludge application on farmland as fertilizer is commonly practiced in many countries. However, high concentration of heavy metals like mercury (Hg) in sludge can cause pollution of soil, plant and the human food chain. In order to examine the risk of Hg transfer into plants a five year field experiment was conducted in which we investigated uptake of Hg from a sludge-amended soil by corn. Sludge application rates were 0, 25, 50 and 100 Mg ha-1. To study cumulative and residual effects of the sewage sludge, applications were repeated on 4/5 of each plot in second year, on 3/5 of plots in third year, on 2/5 of plots in fourth year and in 1/5 of plots in fifth year. After the fifth year, soil samples from the 0-20 and 20-40 cm depths were taken and analyzed for total Hg. Corn plants were harvested and roots, stems and grains were separately analyzed for Hg concentrations. Sludge application significantly increased total Hg concentration in soil. Total Hg concentration in soil ranged from 20 µg kg-1 (in control plots) to 1200 µg kg-1 (in plots with 500 Mg ha-1 sludge application). Sludge application significantly increased uptake of Hg in different plant parts. At the end of the fifth year the average Hg concentrations in root, stem, and grain were 91, 9, and 8 µg kg-1, respectively. Corn yield increased significantly with sludge application and this fertilizer effect was visible five years after a single sludge application.
S Akhavan, J Abedi Koupaee, S.f Mousavi, K Abbaspour, M Afyuni, S.s Eslamian,
Volume 14, Issue 53 (fall 2010)
Abstract

Temporal and spatial distribution of water components in watersheds, estimation of water quality, and uncertainties

associated with these estimations are important issues in freshwater studies. In this study, Soil and Water Assessment

Tool (SWAT) model was used to estimate components of freshwater availability: blue water (surface runoff plus deep

aquifer recharge), green water flow (actual evapotranspiration) and green water storage (soil water), in Hamadan-Bahar

watershed. Also, the Sequential Uncertainty Fitting program (SUFI2) was used to calibrate and validate the SWAT

model and do the uncertainty analysis. Degree of uncertainty is calculated by R-factor and P-factor parameters. In this

paper, results of calibration and validation are given for the river monthly discharge. In most stations, especially in

outlet of the watershed (Koshkabad station), simulation of river discharge was satisfactory. Values of R-factor in

calibration of monthly runoff were 0.4-0.8. These small values show good calibration of runoff in this watershed.

Values of P-factor were 20-60%. These small values show high uncertainty in estimations. For most stations of the

watershed, lack of data on river-water withdrawal caused poor simulation of base-flow and therefore the P-factor values

were low. Nash-Sutcliff (NS) coefficient was 0.3-0.8 after calibration, which shows good model calibration of outlet.

This study provided good information on the components of freshwater availability at spatial (sub-basin) and temporal

(monthly) scales with 95% prediction uncertainty ranges. The results of uncertainty analysis of components of

freshwater availability show that uncertainty ranges of average monthly blue water are larger than the other

components, because of its sensitivity to more parameters.


J. Zamani Babgohari , M. Afyuni , A. H. Khoshgoftarmanesh , H. R. Eshghizadeh2 ,
Volume 14, Issue 54 (winter 2011)
Abstract

The management and application of organic wastes in agricultural lands decreases environmental risks and increases utilization of these matters. The objective of this research was to investigate and compare the effect of polyacryl factory sewage sludge (PSS), municipal compost (MC) and cow manure (CM) on soil properties and on yield and growth of maize (single cross 704, Zea mays L.). The treatments were control (without any organic waste) and application of PSS, MC, and CM at two rates (15 and 45 t ha-1). This research was done in the research farm of Isfahan University of Technology (Lavark-Najafabad). The experimental design was a randomized, complete block with three replications. Treatments were incorporated into the soil before the maize planting (on 23 June 2008) and soil sampling was performed after 132 days (Simultaneously with maize harvesting). Application of the organic wastes resulted in significant increase soil organic matter (SOM), total nitrogen (TN) and saturated hydraulic conductivity (Ks) and significantly decreased bulk density. However, saturated hydraulic conductivity was decreased by application of PSS. Application of 15 and 45 t ha-1 of PSS reduced Ks more than 14% and 42%, respectively, compared with control however, the reduction was significant only in the plots which received 45 t ha-1 of PSS compared with control. The results of plant yield and growth showed that leaf area index (LAI), plant length, biological yield, 1000 seed weight and seed yield increase due to the application of organic wastes.
H. Shirani , E. Rizahbandi, H. Dashti, M.r. Mosaddeghi, M. Afyuni,
Volume 15, Issue 55 (spring 2011)
Abstract

Organic matters are the most important factors that affect soil compactability and physical characteristics. In order to study the effect of pistachio waste on physical characteristics of two soils, a factorial experiment was conducted in a completely randomized design with three replications in a greenhouse. The treatments included pistachio waste at 4 levels (0, 3, 6 and 9 w/w %) and two types of soil texture (silty clay loam and sand).The results showed that the bulk density of sandy soil was decreased at high levels of waste application before compaction but had no significant effect on the bulk density of clay soil. The penetration resistance of both soil types was decreased by pistachio waste application. Soil water holding capacity increased and moisture curves shifted up for higher levels of organic matter application, while compaction curve reciprocally shifted into the lower levels by incorporation of wastes into the soils. At higher levels of organic matters, maximum bulk density was decreased and critical moisture was increased specially in fine texture soil. After compaction, the application of pistachio waste significantly reduced penetration resistance in silty clay loam soil relative to control but in sandy soil its effect on penetration resistance was only significant at maximum level (9 %).
M. Sharifi, M. Afyuni, A. H. Khoshgoftarmanesh,
Volume 15, Issue 56 (sumer 2011)
Abstract

Micronutrients such as Fe and Zn in adequate level are essential for plant growth cycle and impose a vital role in increasing yields of most agricultural crops. Using organic wastes such as sewage sludge, compost and manure is a proper practice for returning organic matter and some nutrients into the soil, particularly in arid and semi-arid regions. The objective of this study was to determine the effects of sewage sludge, compost and cow manure on availability of Fe and Zn in soil and their uptakes by corn, alfalfa and targetes flower. A completely randomized design with three treatments (sewage sludge, compost and cow manure at 25 Mg/ha) was used. Application of sewage sludge, compost and cow manure significantly increased availabile Fe and Zn of the soil. The application of organic wastes increased the dry matter yield of the plants. Fe and Zn concentration of plants shoots in organic amendments treatments were significantly greater than blank. The highest mean concentration of Fe in plant tissues was obtained in the cow manure and the highest mean concentration of Zn in plant tissues was obtained in the compost treatment.
A.r. Melali , M.a. Hajabbasi, M. Afyuni, A. H. Khoshgoftarmanesh,
Volume 15, Issue 56 (sumer 2011)
Abstract

The petroleum refinery sludge is an important source of environmental pollution. Burning and burying of the sludge may have adverse effects on environment and human health. Thus, other mechanisms for decreasing the toxic effects of hydrocarbon substances in the sludge must be used. In this study, Isfahan refinery sludge was dewatered, air dried and mixed by 0, 10, 20, 30 and 40% w/w ratio with two calcareous soils, viz., Mahmoud Abad (Typic Haplocalcids with clay texture) and Bagh Parandegan (Anthropic Torrifluvents with silty loam texture). Different mixtures of soil and sludge were farmed for 21 days and irrigated on a daily basis to field capacity. Then, 100 seeds of Tallfescue (Festuca arundinacea) and Agropyron were planted in polluted soils with 3 replicates in 3 kg pots for 5 months. Result showed that Tallfescue and Agropyron yields decreased in sludge contaminated treatments. In the 40% sludge treatment, Tallfescue decreased the total petroleum hydrocarbons content by 65 percent. The highest degradation for agropyron was in the 30% sludge treatment which showed about 55% reduction in total petroleum hydrocarbons. The 40% sludge treatment resulted in the minimum yields of root and shoot plants. The highest degradation of TPHs occurred in the Tallfescue rhizospher of 40% sludge. Maximum degradation of TPHs on the Agropyron rhizospher was in 30% sludge mixed with Bage parandegan soil, but maximum yield of plant was in 20% sludge. Our study shows that Tallfescue rhizospher is most effective for decreasing TPHs, and that the phytoremediation in soils with more clay can adsorb and fix the toxic components and then at higher levels of pollutions can let the plants grow.
L. Khodakarami, A. Soffianian, N. Mirghafari, M. Afyuni, A. Golshahi,
Volume 15, Issue 58 (winter 2012)
Abstract

Among the environmental pollutants, heavy metals according to their irresolvable and physiological effects on living organisms at low concentrations, are of special importance These elements due to low mobility are gradually accumulated in soil Being accumulated in soil, they eventually enter the food chains and threaten human health and other creatures Therefore, studying concentration distribution of heavy metals for soil pollution monitoring and maintaining environmental quality is essential In this study we investigated the effect of agricultural land use and geology on the concentration of heavy metals contamination of soil and spatial distribution map, using collected data, GIS and GeostatisticsUsing systematic stratified random sampling, 135 surface soil samples( 0-20 cm) from an area of 7262 sq km area and we measured total concentration of elements Nickel, Chromium and Cobalt and soil characteristics including pH, organic matter and texture. The mean value of elements concentrations turned out to be Cr: 88.9+22.7 Co: 17.6+3.5 Ni 63.1+17.7 mg per kg and the mean acidity is 7.8 which in the area is an indication …… property. Formetal concentrations interpolation procedures, Geostatistics was used. By the aid of spatial correlation analysis, appropriate interpolation method using functions mean absolute error and bias average error were selected. Interpolation map concentrations of heavy metals Chromium, Cobalt and Nickel with ordinary kriging method and the exponential model were developed Interpolation map analysis of heavy metals by the aid of geological and land use maps show that the distribution of the elements Chromium, Cobalt and Nickel are consistent with the geology classes However, they did not match the agriculture pattern Findings of this study in the area give us appropriate information about the concentration distribution of heavy metals Chromium, Cobalt and Nickel which can be used in monitoring and evaluation processes of heavy metals pollution in agricultural lands area. But on the other hand sampling in the areas far away from human effects, showed that the heavy metals concentration is naturally high.
M. Pirzadeh, M. Afyuni, A. H. Khoshgoftarmanesh,
Volume 16, Issue 60 (Summer 2012)
Abstract

This study was carried out to investigate zinc (Zn) and cadmium (Cd) concentration in paddy soil and rice grain produced in central and southwest Iran in relation to soil and plant factors, and their intake in peoples diet was also assessed. Rice crops and associated surface soils (0-30 cm) were collected from 136 fields in Isfahan, Fars and Khuzestan provinces. The result, showed the DTPA-Zn concentration in more than 50% of paddy soils was less than its critical deficiency concentration (2 mg kg-1). The grain Zn concentration in more than 54% of the rice samples was less than 20 mg kg-1. The measured Cd concentrations in paddy soils and edible part of rice exceeded the world health organization (WHO) value in more than 12% of the samples. By considering the average daily rice consumption of 110 g per capita, the Zn intake from rice consumption was estimated about 10% needed for female and male adult. Diet intake analysis did not indicate any excessive dietary intake of Cd when Cd mean of concentrations in rice grain was 0.04 mg/kg, but based on the results of risk analysis, it is more than safely level for contaminated rice.
A. H. Baghaie, A. H. Khoshgoftarmanesh , M. Afyuni,
Volume 16, Issue 60 (Summer 2012)
Abstract

Cow manure and sewage sludge add heavy metals to soil. Organic and inorganic fractions in these compounds can immobilize heavy metals such as lead (Pb) and affect their bio-availability. This investigation was conducted to compare the effects of organic and inorganic fractions of sewage sludge and cow manure on distribution of lead chemical forms in soil as a completely randomized design. Treatments consisted of application of 10% (w/w) enriched sewage sludge and cow manure (6 g Pb kg-1 organic amendments). Another treatment was also used in which soil Pb concentration was increased to 600 mg kg-1 soil using Pb(NO3)2 salt. To compare the effects of organic and inorganic fractions, organic carbon, iron oxide and easily reducible iron and manganese were removed from cow manure and sewage sludge, and were added to the soil by 10% (w/w). The samples were incubated at 23-25ºC for 111 days and their moisture was maintained at 80% water field capacity. More than 50% Pb in Pb(NO3)2 treatment was in exchangeable fraction, while for cow manure and sewage sludge treatments more than 40% Pb was found to be in oxide fraction. Application of cow manure and sewage sludge increased the Pb in oxide fraction by 14.8 and 17.5%, respectively. Removing organic carbon fraction of cow manure and sewage sludge increased the Pb bound to residual fraction by 12% and 14% respectively. Removing iron oxide fraction of sewage sludge and cow manure decreased the Pb bound to oxide fraction by 8% and 13%, respectively. Removing easily reducible iron and manganese decreased the oxide fraction of Pb by 16% and 14%, respectively. It is concluded that, despite relatively high amounts of organic carbon in the sludge and manure, inorganic fractions of these materials have more significant effects on availability of Pb in soil.
M. Karam, M. Afyuni, A. H. Khoshgoftarmanesh, M. A. Hajabbasi, H. Khademi, A. Abdi,
Volume 16, Issue 61 (fall 2012)
Abstract

The task of modern agriculture is to safeguard the production of high quality food, in a sustainable natural environment under the precondition of pollution not exceeding accepted norms. The sustainability of current land use in agro-ecosystems can be assessed with respect to heavy metal accumulation in soils by balancing the input/ output fluxes. The objectives of this study were to model accumulation rate and the associated uncertainty of Zn in the agro-ecosystems of 3 arid and semi-arid provinces (Fars, Isfahan and Qom). Zinc accumulation rates in the agro-ecosystems were computed using a stochastic mass flux assessment (MFA) model with using Latin Hypercube sampling in combination with Monte-Carlo simulation procedures. Agricultural information including crop types, crop area and yield, kind and number of livestock, application rates of mineral fertilizers, compost and sewage sludge and also metal concentration in plants and soil amendments were used to quantify Zn fluxes and Zn accumulation rates. The results indicated that Zn accumulates considerably in agricultural lands of the studied townships especially in Najafabad (3009 g ha-1yr-1). The major Zn input routes to the agricultural soils (and due to agricultural activities) were manure and mineral fertilizers and the major part of the uncertainty in the Zn accumulation rate resulted from manure source.
M. Hamidpour, A. Jalalian, M. Afyuni, B. Ghorbani,
Volume 16, Issue 62 (Winte - 2013 2013)
Abstract

Models are helpful tools to predict runoff, sediment and soil erosion in watershed conservation practices. The objectives of this research were to investigate sensitivity analysis, calibration and validation of EUROSEM model in estimation of runoff in Tangh-e-Ravagh sub-basin of Karoun watershed. The model was tested in a one hectare experimental test site. The area was divided into nine elements according to EUROSEM user's manual. A triangular weir was installed at the outlet of the area to collect runoff in specified time periods for six rainfall events. Sensitivity analysis of the model was performed by a ±10% change in the dynamic parameters of the model and examining the outputs for a rainstorm. Sensitivity analysis showed that total runoff was sensitive to saturated hydraulic conductivity and insensitive to soil cohesion. Sensitivity analysis indicated that the model sensitivity depends on evaluation conditions and it is site-specific in nature. Calibration and validation of the model was performed on input parameters. Calibration of hydrographs was performed by decreasing saturated hydraulic conductivity and capillary drive and increasing initial soil moisture. Validation results showed that EUROSEM model simulated well the total runoff and peak of runoff discharge, but it could not simulate well the time of runoff, time to peak discharge
R. Malekian, J. Abedi-Koupai, S. S. Eslamian, M. Afyuni,
Volume 17, Issue 63 (Spring 2013)
Abstract

Nitrogen (N) loss from irrigated cropland, particularly sandy soils, significantly contributes to nitrate contamination in surface and groundwater and increases N applications to crops. This is because negatively charged nitrate normally does not have much affinity to soil particles. To retard the movement of nitrate, materials should have high affinity for anions, which most naturally occurring minerals do not have. The cation-exchange properties of natural zeolites can be exploited to modify their surface chemistries so that other classes of compounds, particularly anions and non-polar organics are retained. In this study, the ability to remove nitrate from aqueous solutions with different Cl- concentrations using Iranian zeolite (Semnan) modified by hexadecyltrimethylammonium bromide in millimeter and nanometer particle sizes was determined and the equilibrium isotherms were characterized. The nitrate release as affected by time and ionic strength was also evaluated. It was demonstrated that SMZ is capable of adsorbing more than 60 mmol kg-1 and 80 mmol kg-1 nitrate in millimeter and nanometer sizes, respectively, and adsorbed nitrate can be easily released under different ionic strengths. The millimeter and nanometer-sized SMZ showed 26.7% to 82.3% and 37.8% to 85.5% nitrate removal efficiency, respectively. The average of nitrate released by millimeter-sized SMZ was 6.92 mmol kg-1 in deionized water while it was 14.68, 22.71, and 34.91 mmol kg-1 in releasing solutions with ionic strengths of 0.03, 0.1, and 0.3 M, respectively
Mahin Karami, Majid Afyuni, Amir Hossein Khoshgoftarmanesh, Mohammad Ali Hajabbasi, Hossien Khademi, Ali Abdi,
Volume 17, Issue 64 (summer 2013)
Abstract

Zinc (Zn) is an essential trace element for plants as well as for animals and humans. There is a significant relationship between soils, plants and humans Zn status in a certain agro-ecosystem. The objectives of this study were to assess Zn status of soils in 3 arid and semiarid provinces of Iran and to model the relationship between wheat grain Zn and agro-ecosystem parameters. About 137 soil and wheat samples were collected randomly from the agricultural soils of Fars, Isfahan and Qom and were analysed in laboratory. Modeling the relationship between wheat grain Zn and agro-ecosystem parameters was done using least square based and robust methods. The results indicated that total Zn concentration of soils (range, 21-149 mg kg-1 mean, 75.2 mg kg-1) was in normal ranges. The DTPA-extractable Zn concentrations were below the critical level (0.8 mg kg-1) in 16% of the surveyed fields. The Zn concentration in 80% of wheat grains was sufficient (more than 24 mg kg-1) with respect to plant nutrition (range, 11.7-64 mg kg-1 mean, 31.6 mg kg-1). However, Zn bioavailability for consumers was generally low in more than 75% of the samples. This is because of high phytic acid to Zn molar ratio (more than 15). Soil DTPA-extractable Zn and available P were entered in to most of regression models significantly. Regression analysis showed that most of models fitted to wheat grain Zn concentration and soil Zn and influenced by agro-ecosystem parameters had a weak prediction power, despite their high determination coefficient. This means that factors other than those considered here have a strong influence on the uptake of Zn by wheat in these soils.
Majid Hejazi Mehrizi, Hossein Shariatmadari, Majid ََafyuni,
Volume 17, Issue 64 (summer 2013)
Abstract

Application of sewage sludge has been considered as an organic fertilizer in arid and semi-arid regions of Iran. This study was conducted to investigate cumulative and residual effects of sewage sludge on soil inorganic fractions and their relation to phosphorus (P) availability. Two levels of application (50 and 100 Mg ha-1) and three consecutive times of sewage sludge application (1, 3 and 5 years) with a control treatment were studied in a randomized complete block split plot design with three replications. Composite soil samples were collected from 0-30 depth at the end of 5th year of application. Increasing the rate and application year of sewage sludge enhanced dicalcium phosphate (Ca2-P), octacalcium phosphate (Ca8-P), apatite (Ca10-P), aluminum phosphate (Al-P), iron phosphate (Fe-P) and available P but decreased occluded P (OC-P). Residual effect of sewage sludge application resulted in increased inorganic fractions in blocks treated for 1 year compared to control. Positive correlations were observed between inorganic P fractions and Olsen P, wheat yield and P uptake (except OC-P). We concluded that inorganic P fractions and P availability increased in sewage sludge amended soil.
Vajiheh Dorostkar, Majid Afyuni, Amirhossein Khoshgoftarmanesh,
Volume 17, Issue 64 (summer 2013)
Abstract

Limited information is available about the effect of preceding crop residues on bioavailability of zinc (Zn) in calcareous soil and its accumulation in wheat grain. In this experiment, residues of five crops including safflower (Carthamus tinctorius L.), sunflower (Helianthus annuus L.), bean (Phaseolus vulgaris L.), clover (Trifolium pretense L.) and sorghum (Sorghum bicolor L.) were incorporated into a calcareous Zn-deficient (0.5 mg kg-1) soil. A treatment without crop residue was also used in the experiment. This experiment was conducted in research greenhouse of Isfahan university of technology in 2010. Two wheat cultivars (Triticum aestivum cvs. Backcross and Kavir) differing in Zn-efficiency were studied in the experiment. Incorporating crop residues into the soil resulted in an increase of grain Zn concentration in both wheat cultivars although this increase was dependent on the preceding crop type. The greatest increase of grain Zn concentration occurred in the sorghum residues treatments. Although application of crop residues significantly decreased grain phytic acid to Zn molar ratio (as Zn bioavailability criteria for consumers), this ratio was still higher than 15, the critical Zn bioavailability level for consumers in foods. According to the results, despite the increase in the total Zn content, the bioavailability of Zn in wheat grain was not affected by crop residue treatments.
M. Nasrifard, G.h. Sayyad, A.z. Jafarnejadi, M. Afyuni,
Volume 17, Issue 65 (fall 2013)
Abstract

Environmental pollution caused by heavy metals such as lead is a serious and growing problem. Due to the importance of wheat in the human nutrition, this research was conducted to study concentration of lead in the soil and also seeds of wheat farms in Khuzestan Province. Therefore, in the agricultural year of 2007-2008, the soil and wheat seed samples were collected from 100 farms whose locations were specified using weighing sampling method. The lead concentrations in soil (total and available), and wheat seeds samples were measured. The result revealed that lead concentrations in soil and seeds in none of the studied regions exceeded the respective critical levels (50 and 30-300 mg/kg, respectively). Ezeh with an average of 0.01 µg/kg had the lowest amount of lead in the wheat seeds, while Bagh‌Malek with an average of 190 µg/kg had the highest amount. The mean concentration of available lead in the soils of study region was 0.6 mg/kg. The concentration of available lead had a negative and significant correlation (r=-0.2*) with the ECe. Also, lead concentration in wheat seeds had a positive and significant correlation (r=0.3**) with the amount of calcium carbonate equivalent. More lead concentration in seeds of bread wheat cultivars showed its higher potential for accumulation of lead than durum wheat.
T. S. Taleghani , H. Khademi, M. Afyuni ,
Volume 18, Issue 67 (Spring 2014)
Abstract

Stabilizing heavy metals in polluted soils is a method to prevent them from entering plants. Clay minerals are considered good sorbents for heavy metals due to their low cost, high abundance, easy manipulation and harmlessness to the environment. The objective of this study was to investigate the potential of clay deposits containing smectites and palygorskite to sorb cadmium and to reduce its movement into canola. Two selected deposits are located in the Isfahan Province. Physical and chemical characteristics of clay deposits were determined. The clay fraction was then separated from each deposit sample. This study showed that palygorskite was the dominant clay mineral in deposit sample 1 and smectites in deposit sample 2. These clays were then used as an amendment to plant growth medium. Pot experiment was carried out with canola (Brassica napus) as a test plant with 3 replicates. Treatments included three growth media: smectite + quartz sand, palygorskite + quartz sand and pure quartz sand (control treatment) under 3 Cd concentrations: 0, 2.5 and 7.5 ppm. Results obtained from the pot experiment indicated that deposits containing smectite and palygorskite were very useful in stabilizing cadmium in polluted soils and could prevent Cd from entering plant. Smectite clay mineral could retain a higher quantity of cadmium as compared to palygorskite. Plants in pots amended with smectite had a higher growth rate as compared to those in control and palygorskite amended pots. Cadmium accumulation in plant roots was much higher than that in shoot. Furthermore, the higher Cd concentration in growth media resulted in the higher amount of Cd uptake by the plant.

Page 2 from 4     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb