Showing 126 results for Wheat
B. Daneshbakhsh, A. H Khoshgoftarmanesh, H. Shariatmadari,
Volume 17, Issue 65 (12-2013)
Abstract
This research was carried out in a hydroponic culture to investigate the effect of Zn nutrition on phytosiderophore release by roots of three bread wheat genotypes (Triticum aestivum L. cvs. Rushan, Kavir, and Cross) differing in Zn-efficiency. The wheat seeds were germinated in sterile sand and two weeks later the plants were transferred to nutrient solution containing different Zn levels. Phytosiderophore released by plant roots was collected ten days after applying Zn treatments and measured using resin-Cu-mobilization test. A month after their transfer to nutrient solution, the plants were harvested and Fe and Zn concentrations in root and shoot were measured, and total amounts (uptake) of these nutrients were determined. Zinc addition increased concentration and total amount of Fe and Zn in shoot in Rushan genotype, while it had no significant effect on concentration and total amount of Zn in shoot and root of Kavir and Spring Back-Cross-Rushan genotypes. Addition of Zn to the nutrient solution decreased concentration and total amount of Fe in shoot of all wheat genotypes. On the other hand, Zn nutrition increased root Zn concentration in Rushan and Kavir genotypes, while it resulted in significant decrease of root Zn concentration in Back-Cross-Rushan genotype. Effect of Zn nutrition on the amount of phytosiderophore release by roots of wheat genotypes was different. Zinc nutrition resulted in an increase of phytosiderophore release by roots of Rushan, while it had no significant effect on phytosiderophore release in other wheat genotypes.
G. Yousefi, A. Safadoust, M. Mosaddeghi, A. Mahboubi,
Volume 17, Issue 65 (12-2013)
Abstract
This study was conducted to assess the long-term effects of soil texture and crop management on transport of lithium (Li+) and bromide (Br-) under unsaturated flow conditions. Treatments were two different soil textures of clay loam and sandy loam to be cropped with either wheat or alfalfa for 4 years. Undisturbed soil columns were taken for the steady-state flow condition using tap water prior to applying a pulse of 0.005 M (C0) LiBr solution as the influent. Four pore volumes (4PV) leaching for each column was obtained. Bromide and lithium concentrations of the effluent (C) were measured in 0.2PV intervals using bromide selective electrode and flame photometer, respectively. Relative concentrations (C/C0) of Br- and Li+ in the effluent were drawn vs. pore volumes. The results showed that the effluent concentrations were significantly affected by crop type and soil texture (in combination by soil structure). The breakthrough curves illustrated the early appearance of Br- in the effluent due to anion repulsion and retarded movement of Li+ because of surface adsorption through the soil columns. Both Br- and Li+ concentrations decreased with time and converged at low levels justifying the minor effect of macropores on continuation of leaching and final transport via soil matrix. The Br- and Li+ concentrations were higher in the effluent of clay loam soil under alfalfa due to higher structural stability compared with sandy loam soil under the same crop. It was also shown that in both soil textures the concentrations of Br- and Li+ appeared to be higher under alfalfa than under wheat, indicating the importance of crop management in contaminant transport compared with soil texture. The trends of breakthrough curves of Li+ were similar to Br- with lower concentration in effluent as a result of its adsorbtion on active surfaces.
H. Motaghian, A. Hosseinpur, F. Raiesi, J. Mohammadi,
Volume 17, Issue 65 (12-2013)
Abstract
Studying the distribution of Zn in the soils allows investigating their mobility and bioavailability. In this research, 10 calcareous soil samples were selected, and sewage sludge-amended (1% w/w) and -unamended (control) soils were incubated for 1 month. Before planting, fractions of Zn were determined, three seeds of wheat were planted in each pot and after 8 weeks, they were harvested. Results showed that all Zn fractions were increased by sewage sludge addition. Results of pot experiment indicated a significant correlation between Zn concentration in wheat with exchangeable (r=0.92**) and Zn associated with Fe and Mn oxides (r=0.76*) in control soils. In addition, significant correlation coefficient was found between Zn associated with Fe and Mn oxides and Zn uptake index (r=0.86**). Moreover, wheat responses were significantly correlated with Zn exchangeable (r=0.71*- 0.84**) in amended soils. Yield was correlated with Zn associated with carbonates and Zn associated with Fe and Mn 0.69 and 0.75, respectively. Zn uptake index was correlated with Zn associated carbonates (r=0.64*). Therefore, the exchangeable and Zn associated with Fe and Mn oxides in control soils and the exchangeable and Zn associated carbonates and Zn associated with Fe and Mn oxides in amended soils could be used as available fractions of wheat.
M. Nasrifard, G.h. Sayyad, A.z. Jafarnejadi, M. Afyuni,
Volume 17, Issue 65 (12-2013)
Abstract
Environmental pollution caused by heavy metals such as lead is a serious and growing problem. Due to the importance of wheat in the human nutrition, this research was conducted to study concentration of lead in the soil and also seeds of wheat farms in Khuzestan Province. Therefore, in the agricultural year of 2007-2008, the soil and wheat seed samples were collected from 100 farms whose locations were specified using weighing sampling method. The lead concentrations in soil (total and available), and wheat seeds samples were measured. The result revealed that lead concentrations in soil and seeds in none of the studied regions exceeded the respective critical levels (50 and 30-300 mg/kg, respectively). Ezeh with an average of 0.01 µg/kg had the lowest amount of lead in the wheat seeds, while BaghMalek with an average of 190 µg/kg had the highest amount. The mean concentration of available lead in the soils of study region was 0.6 mg/kg. The concentration of available lead had a negative and significant correlation (r=-0.2*) with the ECe. Also, lead concentration in wheat seeds had a positive and significant correlation (r=0.3**) with the amount of calcium carbonate equivalent. More lead concentration in seeds of bread wheat cultivars showed its higher potential for accumulation of lead than durum wheat.
I. Esfandiarpour Boroujeni, Y. Safari,
Volume 18, Issue 67 (6-2014)
Abstract
Comparison of the land suitability variations among the soil map units in viewpoint of pedodiversity indices may provide a good assessment of the soil mapping precision. The main objective of this study was to assess the significance of functional pedodiversity thorough two detailed map units for irrigated wheat and potato for class and subclass levels of suitability in the Faradonbeh plain, using Shannon and Simpson indices. First, soil samples at 35 and 47 sampling sites in the D and E map units, respectively, were collected from the depths of 0-25, 25-50, 50-75 and 75-100 cm. Then, the qualitative land suitability class and subclass of all sampling points for each studied land use, was evaluated based on simple limitation method. Although both indices showed higher values in the subclass level of suitability, but the average functional pedodiversity of the studied map units, indicate a significant difference (95% confidence level), just in this suitability level. It was observed that the significance of the pedodiversity indices is not influenced by the land use type or the analyzed diversity index. Hence, as a supplementary procedure to study the intra-unit variation of the soil maps, use of diversity indices may provide some worthwhile information
M. Norouzi, A. H. Khoshgoftarmanesh, M. Afyuni,
Volume 18, Issue 70 (3-2015)
Abstract
Organic fertilizers affect soil chemical and physical properties, particularly chemical forms of zinc in soil solid phase and thereby improve soil Zn availability. The present field study was aimed to evaluate the effects of organic and chemical fertilizer (zinc sulfate) on different zinc fractions in soil solid phase of rhizosphere in two successive years in Rudasht Research Field, Isfahan. Treatments consisted of sewage sludge (5 and 10 t ha-1), cow manure (5 and 10 t ha-1), and ZnSO4 (40 Kg ha-1). The control had no added Zn. Three weeks after applying fertilizer treatments, Back Cross genotype of wheat was cultivated in each plot. Our results showed that the organic fertilizers increased Zn concentration in exchangeable fraction (EXCH-Zn), the organically bound Zn form (ORG-Zn), and Zn bound to iron and manganese oxides (FeMnOX-Zn). However, the changes in Zn fractions were dependent on the fertilizer type. Positive and significant correlation between EXCH-Zn, ORG-Zn, and FeMnOX-Zn, and the total Zn uptake by wheat indicated that these pools of Zn in solid phase are labile pools with a significant role in supplying Zn for plants.
V. Jahandideh Mahjen Abadi, M. Sepehri, A.h. Khoshgoftarmanesh, H. R. Eshghizadeh, D. Rahmani Iranshahi,
Volume 19, Issue 71 (6-2015)
Abstract
Zinc deficiency is the most widespread micronutrient disorder in the production of wheat (Triticum aestivum L.) and other cereal crops. An experiment was conducted in greenhouse, in 2013, using the sterile sand-perlite (2:1 v/v), to study the effects of two beneficial microorganisms on growth and nutritional status of wheat (Nicknejad cultivar). The study was arranged as factorial in a completely randomized design with three replications. The experimental factors consisted of Piriformospora indica (E0: Uninoculated E1: Inoculated), Pseudomonas putida (E0: Uninoculated E1: Inoculated) and Zinc (Zn0: 0 Zn1: 2µM ZnSO4 ). The results showed that inoculation by P. putida increased shoot dry weight at both levels of zinc, but this increase was observed for root dry weight only without zinc application. The iron concentration of shoot was decreased as a result of inoculation by P. putida at both levels of zinc. However, P. indica inoculation increased iron concentration in zinc application, but had no significant effect without zinc application. At both levels of zinc, the highest P, Zn, chlorophyll a and b concentrations were achieved by inoculation with P. indica. Inoculation by P. putida reduced P concentration at both levels of zinc but it reduced Zn, chlorophyll a and b concentrations only with zinc application. The results of this research showed that despite negative effect of P. putida on nutrient uptake, inoculation by P. putida and/or P. indica plays an important role in the promotion of wheat growth in zinc deficiency conditions.
H. R. Motaghian, A. R. Hosseinpur, J. Mohammadi, F. Raiesi,
Volume 20, Issue 75 (5-2016)
Abstract
Zinc (Zn) is one of the essential micronutrients for plant growth and its deficiency frequently occurs in calcareous soils. But, a suitable extractant for estimation of plant-available Zn in calcareous soils, amended with sewage sludge, has not been presented yet. The aim of this research was to assess several chemical extractants (7 extractants) for estimation of available Zn in calcareous soils amended (1% w/w) and unamended with sewage sludge. Results showed that Mehlich 3 and Mehlich 1 extractants extracted the highest and the lowest concentrations of Zn in both amended and unamended soils, respectively. All wheat indices (wheat yield, Zn concentration and Zn uptake) increased by sewage sludge addition. Besides, the results indicated that in unamended soils, significant correlations were found (r=0.65*- 0.91**) between extracted Zn using AB-DTPA, DTPA-TEA and Mehlich 3 extractants and different wheat indices. On the contrary, in sewage sludge-amended soils, only the correlation between extracted Zn using Mehlich 2 and Zn concentration was significant (r=0.83**). According to this study findings, the suitable extractant for extracting wheat-available Zn is thoroughly different in calcareous soils amended and unamended with sewage sludge.
M. Najafi-Ghiri,
Volume 20, Issue 77 (11-2016)
Abstract
The status of soil K forms and its relationship with K content in wheat grain at harvest period may be important for nutrient fertility management. For this purpose, 40 surface (0-20 cm) and subsurface (20-40 cm) soil samples and also grain samples from wheat fields of Darab region were randomly sampled in 2014. Then physicochemical properties of the soils and the contents of soluble, exchangeable and non-exchangeable K and contents of K in wheat grains were determined. Results indicated that content of soluble, exchangeable and non-exchangeable K in the studied soils ranged 15-70, 91-443 and 396-1182 mg kg-1, respectively. Significant relationships were obtained between soil K forms and clay, calcium carbonate and CEC. Although it is expected that content of easily available K (soluble and exchangeable K) was low at late stage of wheat growth, most soils had sufficient K content. The positive and significant relationship among different K forms was indicative of the K forms equilibration at the time of wheat harvesting. Although there is not a relationship between K content in wheat grain and soil K forms, it was shown that K content of wheat grain was correlated with soil exchangeable K and clay content in fine-textured soils (clay > 30%). It means that ammonium acetate may be a suitable extractant for estimation of soil K status and plant available K of heavy-textured soils in the studied region.
Dr. S. Akhavan, N. Delavar, Dr. A. M. Mehnatkesh,
Volume 21, Issue 2 (8-2017)
Abstract
The aim of this study was to investigate the climate change impacts on some factors affecting rainfed wheat growth such as effective rainfall, planting date and length of growing season in four stations located in Chaharmahal and Bakhtiari province. Firstly, it is necessary to predict future (2046-2065) climatic conditions. For this purpose, the output of HADCM3 general circulation model was used under three scenarios of A1B, A2 and B1. The data were downscaled by LARS-WG model. After simulating the climatic parameters in mention period, the effective rainfall during the wheat growing season was calculated by Food and Agriculture Organization method. Also, the optimum planting date was defined according to the date of the first rain (at least 10 mm in case of continuing for next days). The wheat's growth stages were determined by Growing Degree Days method. The results indicated a rise in temperature for four stations. On average, it is expected that the annual temperature increase by 1.8°C compared with the baseline period (2010-1990). Total annual precipitation in Shahrekord, Koohrang and Borujen will decrease 2.2, 7.8 and 3.6 per cent respectively. About Lordegan it will increase by 2.7 per cent. Also, the results showed that in three stations of Shahrekord, Koohrang and Borujen, the amount of effective rainfall in November will increase compared to baseline, but in Lordegan it will reduce. So, in the first three stations, in most years, planting date was obtained earlier than baseline, but in Lordegan it was later than baseline. The Length of growing season will reduce in Shahrekord, Borujen and Lordegan stations, 12 days on average and in Koohrang about 13 days.
M. J. Asadollahzade, A. H. Khoshgoftarmanesh, M. Sepehri,
Volume 21, Issue 4 (2-2018)
Abstract
Iron (Fe) and zinc (Zn) deficiency is common in wheat growing areas of the world particularly in calcareous soils. Soil application of chemical fertilizers is considered as a cost-effective and easy approach to combat micronutrient deficiency. However, due to economic, environmental, and agronomic constrains, efficiency of soil fertilization is low in most calcareous soils. Therefore, finding proper and effective approaches to improve fertilizer use efficiency and/or soil availability of metal nutrients is of great importance. This research was performed to investigate the effect of endophyte fungus Piriformospora indica and Zn-sulfate application on root and shoot dry matter yield and uptake of Fe and Zn by wheat. The experiment was set up in a completely randomized factorial design; each treatment contained three replicates. Two wheat cultivars (Triticum aestivum L. cvs. Durum and Rushan) were exposed to two Zn fertilizer rates (0 and 15 mg/kg ZnSO4.7H2O) and were inoculated with and without P. indica. Results showed that inoculation with P. indica increased root and shoot uptake of Fe (25 and 27%, respectively) and Zn (46 and 26%, respectively). In general, inoculation of roots with P. indica resulted in significant increase of shoot and root dry matter yield and uptake of Fe and Zn by both studied wheat cultivars. Infection of wheat roots with P. indica seems to be an effective and environment-friendly approach to improve Fe and Zn uptake in calcareous soil; although further research is needed to clarify all aspects of this approach
C. Tofighi, R. A. Khavari-Nejad, F. Najafi, Kh. Razavi, F. Rejali,
Volume 22, Issue 2 (9-2018)
Abstract
Salinity adversely affects crops metabolism and yield. The present work was conducted to evaluate the singular and interaction influences of Arbuscular mycorrhizal (AM) fungi and brassinolide, as an active group of (brassinosteroids) BRs, on some physiological parameters of wheat plants to cope with salt stress14-day old mycorrhizal (Glomus mosseae) and non- mycorrhizal wheat (Triticum aestivum L.). Plants were foliar sprayed with 0 and 5 µM epibrassinolide 3 times once every two days. Then, each group was treated with 0 and 150 mM NaCl once every 3 days for 10 days. After salt treatment, some plants were harvested to estimate the leaf reducing sugar and glycine betaine contents. After the final growth, all wheat plants were harvested to measure some yield parameters. Synergistic influence of brassinolide and AM fungi was observed in protein and 1000-grain weight. It seemed that this was rooted in the increased accumulation of reducing sugars and glycine betaine, both helping to maintain osmotic potential in cells under high salinity in soil.
M. Noshadi, S. Karimi,
Volume 22, Issue 3 (11-2018)
Abstract
The growth of world population and the demand for agricultural products can be regarded as one of the important issues that humanity has ever faced. There are serious concerns regarding surface and ground water pollution by nitrates because of using nitrogen fertilizers in the agriculture. Improving agricultural water management systems can reduce nitrate in drainage outflow and therefore, reduce the environmental pollution. This research was conducted to evaluate the effect of the controlled drainage and nitrogen fertilizer on nitrate leaching and environment pollution as a factorial randomized complete block design in Shiraz College of Agriculture. The treatments consisted of three fertilizer levels; 0, 200 and 300 kgN/ha, and three water table depths: free drainage, control water table at 60cm (CD60) and 90 cm (CD90) depths, respectively. According to the results, the value of drainage water and nitrate losses in the controlled drainage toward free drainage were significantly increased. The mean reduction of drainage water in CD60 and CD90, as compared to free drainage, was 59.3 and 35.7%, respectively. The decrease nitrate losses, as compared to free drainage, was 72 and 44%, respectively. The total value of nitrate leaching in 200 and 300 kgN/ha fertilizer treatments was 1.86 and 2.48 times of 0 kgN/ ha.
A. Azough, S. K. Marashi, T. Babaeinejad,
Volume 22, Issue 3 (11-2018)
Abstract
The concern about the war and the threat of terrorism and weapons application and prohibited weapons is growing; on the other hand, the contamination of soil, plant and disease outbreaks in the community is increasing. The main problem with crops, especially wheat in the contaminated soils of war zones, are associated with the high concentrations of heavy metals and toxic things, especially arsenic. Zeolite is one of the solutions to the problem of contaminated soils in war affected areas. The aim of this study was to determine the effect of the ionic strength of zeolite on the adsorption of arsenic and nutritional properties of wheat in contaminated soils including weapons. The experiment was carried out in a factorial arrangement involving a randomized complete design with three replications. Treatments included four levels of zeolite 2.5 (a4), 1.5 (a3), 0.5 (a2), 0 (a1) percent of the weight of the soil and two soil recourses, one obtained from out of the war zone (without contamination) (b1) and other one was from the contaminated soil to weapons (b2). The results showed that soils contaminated by weapons increased the concentrations of arsenic in wheat. Also, with the application of Zeolite in the contaminated soil treatments, there was a significant reduction at 1% level and a remarkable increase in nitrogen, phosphorus, potassium and calcium in the wheat grain in both soils.
A. R. Vaezi, . M. Bagheri, K. Afsahi,
Volume 22, Issue 3 (11-2018)
Abstract
Soil erosion by water is a serious environmental problem, particularly in semi-arid regions. In these areas, water loss strongly affects soil loss as well as soil productivity in the rainfed lands. Determination of appropriate seed density for each tillage direction is vital to achieve high crop yield and to prevent soil and water losses. This study was conducted to investigate the combined effects of tillage direction and plant density on the soil and water losses in a rainfed land. Twelve crop plots with the dimensions of 1.5 m × 5 m were installed to investigate the effect of two tillage directions (up to the down slope and on the contour line), two seed densities (90 and 120 kg h-1), a three replications in a rainfed land with 10% slope steepness. Soil and water losses were measured in each plot during the wheat growth period (from October 2015 to June 2016). Significant differences were found between both tillage direction and plant density in the runoff (P<0.05) and soil loss (P< 0.001). Runoff and soil loss in the up to down slope tillage was 4.16 and 4.08 times bigger than the contour line tillage, respectively. Runoff and soil loss with the seed density of 120 kg h-1 were 11.25 and 26.32% lower than those with 120 kg h-1, respectively. This result was associated with the increased cover crop and its control on water flow and the enhancement of water retention in the soil. There was no significant interaction between tillage direction and plant density in the runoff and soil loss. The importance of tillage direction in the soil and water loss was very larger than that of the plant density. The application of 120 kg ha-1 seed density on the contour line could, therefore, considerably prevent soil and water losses in the rainfed lands.
E. Chavoshi, Sh. Arabi,
Volume 22, Issue 4 (12-2018)
Abstract
The objectives of this study were to estimate the concentration of lead (Pb) and cadmium (Cd) in agricultural products and the health risks of them on the human healths around the Irankooh Mine in Isfahan Province. The soil samples (0-20 cm of surface layer) and crop samples (rice and wheat) were collected using the composite and random sampling method. The total concentrations of Pb and Cd in soil were found to be 71.18 and 1.57 mg kg-1. The mean Pb concentrations in rice and wheat were 7.81 and 2.31 mg kg-1, respectively. These values for Cd were 0.15 and 0.124 mg kg-1, respectively. The mean daily intake of Pb through the consumption of cereals was more than the dietary reference intake (3.6 μg kg−1 day−1), but the daily intake of Cd was less than the dietary reference intake. The hazard index (HI) mean value for Pb and Cd for children and adults was 4.60 and 4.64, respectively. It showed that the consumption of the entire foodstuff could lead to potential health risks for consumers. There is also the cancer risk associated with exposure to lead.
B. Rezaeiniko, N. Enayatizamir, M. Norouzi Masir,
Volume 22, Issue 4 (12-2018)
Abstract
Zinc is essential micronutrients for plants. This element improves plant growth and yield and plays a role in the metabolism of carbohydrates. Zinc deficiency in soils and Iranian crops is possible due to numerous reasons such as calcareous soils, excessive use of phosphorus fertilizers and unbalanced fertilizer use. The effect of zinc solubilizing bacteria on some wheat properties was considered as a factorial experiment in greenhouse conditions based on a completely randomized design. Treatments consisted of four levels of bacteria comprising B1 (control), B2 (Bacillus megaterium), B3 (Enterobacter cloacae) and B4 (consortium of both bacterium), and ZnSO4 fertilizer at three levels including Zn0 (control), Zn20 (20 Kg/ha) and Zn40 (40 kg/ha). During the experiment, some parameters such as plant height and chlorophyll index were measured. At the end of the cultivation period, soil available zinc, dry weight of root and aerial part, and the zinc concentration of the root, shoot and grain were determined. Grain yield and zinc uptake in the grain were also calculated. The results indicated soil exchangeable zinc content was increased significantly (P<0.05) in all bacterial treatments, as compared to the control treatment. The maximum amount of soil exchangeable zinc, grain yield, zinc concentration and uptake in grain were observed in the treatment containing bacteria consortium with the application of 40 kg/ha of zinc sulfate fertilizer, which was followed by the treatment containing Enterobacter cloacae with the application of 40 kg/ha of the zinc sulfate fertilizer. The maximum amount of all measured properties in the treatment containing Enterobacter cloacae and Bacillus megaterium indicated the possibility of applying those bacteria for zinc enrichment in wheat, crop optimal production, and the sustainable agriculture.
A. R. Vaezi, S. Rezaeipour, M. Babaakbari,
Volume 23, Issue 3 (12-2019)
Abstract
Limited information is available on the effect of residues rates and slope direction on dryland wheat
(Triticum aestivum L.) yield. This study was carried out to determine the effects of residues rates and tillage direction on grain yield and yield components of the Sardary wheat in a dryland region in Zanjan. Five wheat residues rates (0, 25, 50, 75 and 100% surface cover) were applied and incorporated into soil in two slope directions (along the slope and on contour lines) using the randomized complete blocks design with three replications in a land with 10% slope steepness. Overall, thirty plots with 2m × 5 m dimensions were installed in the field and wheat grain yield and yield components were determined for growth period from 2015-2016. Results indicated that grain yield and yield components were significantly affected by the residues rates and slope direction and their interaction. In contour tilled plots, wheat grain yield (1.78 to per hectare), thousand grain weight (42.26 kg) and wheat height (55.11 cm) were 5.32, 5.01, 16.19 and 1.36 percent more than the plots tilled along the slope. The highest grain yield was found in 75% of residue (2.45 ton per hectare) under contour line direction which was about 53% bigger than control treatment (0% straw mulch) under along the slope. This study indicated that the application of straw mulch before cultivation and incorporating into soil using contour line tillage are proper soil management methods to obtain higher wheat yield in this dryland region.
Z. Shirkhodaei, F. Aghayari, H. Hasanpour Darvishi,
Volume 23, Issue 4 (12-2019)
Abstract
There are new technologies such as geographic information systems (GIS) that can be effective in the optimization of irrigation water. Therefore, utilizing these resources in a desirable, effective and efficient manner to ensure sustainable development is one of the most important issues in the today's world. The aim of this study was to determine and evaluate the potential water use efficiency (WUEp) index in the plain scale by using net water requirement data, area under cultivation and yields, and to determine the comparative advantage of wheat and barley plants in Tehran, Alborz, Qom, Qazvin and Zanjan provinces by employing the geographic information system (GIS). The yields of wheat and barley products by weighted average in ArcGIS software were converted to yields in the plains scale. To calculate the potential and actual water use efficiency, we used the OPTIWAT software in order to calculate the net irrigation water and the current irrigation efficiency plains; also, the yields of wheat and barley products in the plains scale were used. Zoning water use efficiency indexes was performed by using the ArcGIS software and Kriging method. Mapping results showed a comparative advantage of crops in the west and northwest of Tehran province, south and southwest of Alborz province, southwest, north- west and center of Qazvin province, center Qom province and also, northern and southern regions of the Zanjan province, in comparison to other areas. Average potential and actual water use efficiency in the whole study area of the provinces for wheat were 1.43 and 0.58 kg m-3, respectively, while these were 1.62 and 0.65 kg m-3 for barley, respectively.
R. Vahedi, M. H. Rasoili-Sadaghiani,
Volume 23, Issue 4 (12-2019)
Abstract
Synergistic relationships between mycorrhizal fungi (AMF) and organic compounds affect the mobility of the micronutrient elements in the rhizosphere and improve their bioavailability. In order to evaluate the effect of biochar and pruning waste compost of apple and grape trees, as well as AMF, on micronutrient bioavailability in calcareous soil at the wheat rhizosphere, an experiment was carried out in a completely randomized design under greenhouse conditions in a rhizobox study. Some factors including the organic sourses (pruning waste biochar, pruning waste compost and control), microbial inoculation (AMF and no inoculation) were considered. At the end of the growth period, Organic matter (OM) content and bioavailability of micronutrients including iron (Fe), Zinc (Zn), Copper (Cu) and Manganese (Mn) in the rhizosphere and their uptake by wheat plant were determined. The results indicated that OM, Fe, Zn, Mn and Cu were significantly increased in the rhizosphere soil under the influence of organic sources and mycorrhizal inoculation. Furthermore, biochar application in the mycorrhizal tratment resulted in 74.73% and 19.28% increase in Fe and Mn, as compared to non-inoculated conditions, in rhizosphere. The presence of mycorrhizal fungi increased the bioavailability of 94.66% and 29.54% Zn and Cu in the compost treatment, as compared to non-inoculated ones. Application of organic sources and mycorrhizal inoculation increased the micronutrient uptake and plant dry weight.