6 نتیجه برای Artificial Neural Networks
بهاء الدین نجفی، منصور زیبایی، محمدحسین شیخی، محمدحسن طرازکار،
جلد 11، شماره 1 - ( 1-1386 )
چکیده
در این مطالعه بهمنظور پیشبینی قیمت عمده فروشی برخی محصولات زراعی شامل گوجهفرنگی، پیاز و سیبزمینی در استان فارس، برای افق زمانی یک، سه و شش ماه آتی از روشهای معمول پیشبینی و شبکه عصبی مصنوعی استفاده شد. دادههای مورد نیاز برای دوره مهر 1377 تا تیرماه 1384 از اداره جهاد کشاورزی استان فارس اخذ گردید. از دادههای دوره مهرماه 1377 تا دیماه 1383بهمنظور مقایسه روشها و از دادههای شش ماه آخر جهت بررسی قدرت پیش بینی استفاده شد. بهمنظور مقایسه خطای پیشبینی روشهای مختلف نیز، از معیارهای میانگین قدرمطلق خطا، میانگین مجذور خطا و معیار درصد میانگین مطلق خطا بهره گرفته شد. نتایج مطالعه نشان داد که شبکه عصبی مصنوعی دارای خطای پایینتری جهت پیشبینی قیمت محصولات مختلف در افق زمانی یک و سه ماه آینده میباشد و بهطور معنیداری از سایر روشها دقیقتر است. اما در پیشبینی شش ماه آینده تفاوت معنیداری بین روشهای معمول و شبکه عصبی مصنوعی وجود ندارد.
حمیده افخمی، محمدتقی دستورانی، حسین ملکی نژاد، حسین مبین،
جلد 14، شماره 51 - ( 1-1389 )
چکیده
خشکسالی یک شکل طبیعی از اوضاع آب و هوایی است که تکرار آن در طول زمان امری اجتناب ناپذیر می باشد. هدف اصلی این تحقیق بررسی تأثیر نوع عوامل اقلیمی در پیش بینی خشکسالی با استفاده از شبکه عصبی مصنوعی در مناطق مختلف استان یزد است. در اغلب ایستگاه های هواشناسی منطقه یزد (ایستگاههای بارانسنجی) تنها دادههای مربوط به عامل بارش موجود می باشد، در حالی که ایستگاه های همدیدی علاوه بر بارش سایر عوامل هواشناسی از جمله دمای بیشینه، دمای میانگین، رطوبت نسبی، سرعت میانگین باد، جهت باد و میزان تبخیررا نیز دارا هستند. در این تحقیق سعی گردید که نقش تعداد و نوع عوامل اقلیمی (به عنوان عوامل ورودی مدل) در دقت پیشبینی خشکسالی بر اساس شبکههای عصبی مصنوعی مورد ارزیابی قرار گیرد. منطقه مورد بررسی بخشی از استان یزد است که در بر گیرنده 13 ایستگاه کلیماتولوژی و 1 ایستگاه همدیدی است. جهت انجام این بررسی میانگین متحرک سه ساله بارش در تمام ایستگاه ها محاسبه شد و سپس با استفاده از مدل شبکه برگشتی با تأخیر زمانی(Time Lag Recurrent Network)، میانگین متحرک بارش یک سال آینده پیشبینی گردید، که خود عامل اصلی ارزیابی وضعیت خشکسالی در سال آتی است. علاوه بر آن در ایستگاه همدیدی یزد نیز شبیهسازیها با ترکیبات مختلفی از ورودی ها انجام گرفت. بهترین ترکیب ورودی ترکیب " میانگین متحرک بارش - دمای بیشینه" بود که ضریب کارایی آن حدود 90/0 محاسبه شد. بررسی ها نشان داد علیرغم این که در 13 ایستگاه باران سنجی منطقه شبیه سازیها تنها با یک ورودی (بارش) انجام گرفت، در برخی ایستگاه ها نتایج قابل قبولی به دست آمد که حتی ضریب کارایی محاسبه شده بر اساس نتایج حاصله بسیار نزدیک به ایستگاه یزد (با ورودی های مختلف) محاسبه گردید. (R2 از 48/0 در ایستگاه آقا خرانق تا 90/0 در ایستگاه گاریز متغیر بود.) البته میزان درستی پیشبینی ها هنگامی که فقط از یک عامل ورودی در مدل استفاده شده است از ایستگاهی به ایستگاه دیگر متفاوت بوده است. نتایج به دست آمده گویای انعطافپذیری قابل ملاحظه مدلهای شبکه عصبی مصنوعی است که آنها را به ابزار مناسبی جهت مدلسازی در شرایطی که با فقر داده مواجه هستیم مبدل می سازد.
مهدی غلام زاده، سعید مرید، مجید دلاور،
جلد 15، شماره 56 - ( 4-1390 )
چکیده
برای مدیریت خشکسالی در مناطق خشک که اتکای بیشتری به سدها و ذخیرهسازی آبهای سطحی دارند، استفاده از سیستمهای هشدار سریع خشکسالی(DEWS) راهبردی مفید میباشد. در تحقیق حاضر تلاش شده است تا چنین سیستمی طراحی شود که از سه بخش اصلی شامل: 1) پایش خشکسالی 2) پیشبینی ورودیهای رودخانه و مصرف آب و 3) محاسبه یک شاخص هشدار برای مدیریت خشکسالی تشکیل میشود. این سیستم برای سد زاینده رود ارائه شده است. بدین منظور، ابتدا جریان ورودی به سد و مصارف با استفاده از شبکههای عصبی مصنوعی در یک دوره 6 ماهه با در نظر گرفتن عدم قطیعت مربوط، در سطوح احتمالاتی مختلف پیشبینی گردید.
همچنین بر اساس اطلاعات تاریخی ذخیره آب مخزن و روش نگاشت خود سامان یافته (SOFM)، شدت خشکسالی در 5 دسته (بدون خشکسالی ، خشکسالی ضعیف، خشکسالی با شدت کم، خشکسالی شدید و خشکسالی خیلی شدید) تعیین شد. سپس یک شاخص هشدار خشکسالی (DAI) با توجه به شرایط جاری مخزن سد، ورودیها و مصرف آتی آب محاسبه گردید. در نهایت بر اساس نتایج حاصل از شاخص محاسبه شده، سطوح مختلف هشدار از وضعیت نرمال تا شرایط کم آبی شدید مشخص شد. نتایج نشان داد که استفاده از سیستم هشدار سریع طراحی شده میتواند نقش مؤثری در مدیریت مخزن سد زاینده رود، تعیین سیاستهای جیره-بندی و همچنین کاهش خسارات خشکسالی داشته باشد.
کامیار بیات، سید مجید میرلطیفی،
جلد 16، شماره 61 - ( 7-1391 )
چکیده
تابش خورشیدی رسیده به سطح زمین در برآورد تبخیر- تعرق گیاهان و مطالعات هیدرولوژی عامل بسیار مهمی میباشد. به منظور برآورد مقدار تابش کل خورشیدی روزانه بر یک سطح افقی، از شبکههای عصبی مصنوعی و همچنین از پنج مدل تجربی شامل مدلهای فائو (نشریه 56)، هارگریوز-سامانی، محمود-هابرد، باهل و آناندل استفاده شد. دادههای مورد استفاده از سه ایستگاه هواشناسی کرج، شیراز و رامسر که براساس طبقهبندی اقلیمی دومارتن بهترتیب دارای اقلیمهای خشک، نیمهخشک و بسیار مرطوب میباشند و مقدار تابش کل خورشیدی روزانه در این سه ایستگاه بهصورت روزانه ثبت میشود در دوره آماری 1985 تا 1990 (6 سال) انتخاب شدند. دقت مدلهای مذکور در هر یک از سه ایستگاه بررسی شدند. از بین تمام مدلهای استفاده شده برای تخمین تابش کل خورشیدی روزانه، مدل شبکه عصبی مصنوعی با ورودیهای ساعات آفتابی روزانه و حداکثر ساعات آفتابی روزانه در هر سه ایستگاه کرج، شیراز و رامسر بهترتیب با ریشه متوسط مجذور خطا برابر 08/2، 85/1 و 05/2 مگاژول بر مترمربع در روز بهترین مدلها بودند. بعد از آن مدل فائو (نشریه 56) که تابش کل خورشیدی را براساس پارامتر ساعات آفتابی تخمین میزند، از بیشترین دقت برآورد برخوردار بود. در مقابل مدلهای ذکر شده، مدلهای شبکههای عصبی مصنوعی با پارامترهای ورودی دمایی (دمای حداقل و حداکثر) و همچنین مدلهای هارگریوز- سامانی، آناندل و محمود-هابرد که مدلهای دمایی هستند، از دقت کمتری برخوردارند و جهت تخمین تابش کل خورشیدی بهصورت روزانه مناسب نمیباشند
مهدی حیات زاده، محمدرضا اختصاصی، حسین ملکی نژاد، علی فتح زاده، حمیدرضا عظیم زاده،
جلد 21، شماره 1 - ( 3-1396 )
چکیده
فرسایش خاک، بی شک یکی از مهمترین مسائل و مشکلات موجود در عرصه های طبیعی کشور است و آثار مخربی در اکوسیستم های مختلف به جای میگذارد. با توجه به اینکه محاسبه مقادیر رسوب از طریق ایستگاه های رسوب سنجی و اندازه گیری های مستقیم فرسایش فرایندی هزینه بر و مشکل است، یافتن روشهایی برای برآورد دقیق میزان رسوبدهی حوضه های آبخیز بویژه در مناطق خشک و فراخشک به دلیل شرایط حساس اکولوژیکی ضروری می نماید. یکی از روش هایی که تا به امروز در این مناطق نسبت به سایر روش های برآورد رسوب بیشتر مورد استفاده قرار گرفته است روش های رگرسیونی سنجه رسوب می باشد. لذا در این تحقیق مقادیر رسوب مشاهداتی 48 واقعه (دبی و رسوب متناظر) در یک دوره 23 ساله حوضه فخرآباد- مهریز با مقادیر برآوردی از روش های سنجه چند خطی، حد وسط دسته ها، منحنی سنجه حد وسط دسته ها با ضریب اصلاحی QMLE، SMEARING و ضریب اصلاحی FAO و همچنین با نتایج حاصل از روش شبکه عصبی مصنوعی (ANN) مورد مقایسه قرار گرفته و صحت هر یک از این روشها مورد آزمون قرار گرفت. بررسی حاصل از آزمون های مجذور میانگین مربع خطا ها (RMSE)، ضریب تبیین (R2) و معیار ناش (ME) کارایی بالاتر روش شبکه عصبی (ANN) را نسبت به سایر روش های مذکور نشان دادند. نتایج آزمون های مذکور برای روش شبکه عصبی مصنوعی به عنوان روش بهینه به ترتیب 3/203، 86/0 و 66/0 را نشان دادند. نتایج حاصل مبین این است که در استفاده از هر روشی برای برآورد رسوب معلق جریان در مناطق خشک و فراخشک به دلیل ماهیت داده های مشاهداتی و همچنین رژیم خاص جریان ها که اغلب به صورت موقت و فصلی می باشند باید جانب احتیاط را رعایت نمود. در عین حال بررسی نتایج این تحقیق گویای انعطافپذیری بالاتر مدل های شبکه عصبی مصنوعی است که آنها را به ابزار مناسبی جهت مدلسازی در شرایطی که با فقر داده مواجه هستیم مبدل می سازد.
فرشته ظریف، علی عصاره، مهدی اسدی لور، حسین فتحیان، داود خدادادی دهکردی،
جلد 26، شماره 2 - ( 6-1401 )
چکیده
پیشبینی دقیق و قابل اعتماد از سطح آب زیرزمینی در یک منطقه برای استفاده پایدار و مدیریت منابع آب بسیار مهم است. این پژوهش با هدف ارزیابی شبکههای عصبی مصنوعی (ANNs)؛ پیشرونده عمومی (GFF) و تابع پایه شعاعی (RBF) در پیشبینی ماهانه تراز سطح آب زیرزمینی در دشت دزفول- اندیمشک در جنوب غربی ایران انجام شد. برای تعیین متغیرهای مؤثر ورودی در ANNs از الگوریتم اطلاعات متقابل جزئی (PMI) استفاده شد. نتایج بهکارگیری الگوریتم PMI نشان میدهد که متغیرهای ورودی مؤثر بر پیشبینی ماهانه تراز سطح آب زیرزمینی برای پیزومترهای تحت تأثیر برداشت و تغذیه آب، فقط شامل تراز سطح آب در ماه فعلی است. همچنین متغیرهای ورودی مؤثر بر پیشبینی تراز سطح آب برای پیزومترهای تحت تأثیر فقط برداشت آب، به ترتیب شامل تراز سطح آب در ماه فعلی، تراز سطح آب در یک ماه قبل، تراز سطح آب در دو ماه قبل، مختصات عرضی پیزومتر به UTM، تراز سطح آب در سه ماه قبل، تراز سطح آب در چهار ماه قبل، تراز سطح آب در پنج ماه قبل و مختصات طولی پیزومتر به UTM است. علاوه بر این متغیرهای ورودی مؤثر بر پیشبینی ماهانه تراز سطح آب زیرزمینی برای پیزومترهای نه تحت تأثیر برداشت و نه تغذیه آب، به ترتیب شامل تراز سطح آب در ماه فعلی، تراز سطح آب در یک ماه قبل، تراز سطح آب در دو ماه قبل، تراز سطح آب در سه ماه قبل، تراز سطح آب در چهار ماه قبل، تراز سطح آب در پنج ماه قبل، تراز سطح آب در شش ماه قبل، مختصات عرضی پیزومتر به UTM و مختصات طولی پیزومتر به UTM است. نتایج نشان میدهد که شبکه GFF از دقت بیشتری نسبت به شبکه RBF، در پیشبینی ماهانه تراز سطح آب زیرزمینی برای پیزومترهای شامل برداشت و تغذیه آب و پیزومترهای شامل فقط برداشت آب برخوردار است. علاوه بر این شبکه RBF دقت بیشتری در پیشبینی ماهانه تراز سطح آب زیرزمینی برای پیزومترهای شامل نه برداشت و نه تغذیه آب نسبت به شبکه GFF برخوردار است.