Search published articles


Showing 31 results for Shariatmadari

H Shariatmadari, Y Rezainejad, A Abdi, A Mahmoudabadi, M Karami,
Volume 12, Issue 46 (1-2009)
Abstract

Many researchers have reported positive effects of converter sludge and slag, two by-products in Isfahan iron melting factory. In this work, the optimum rate of application and the availability of some essential elements (for plant growth) in the converter sludge and slag for corn were investigated. The converter sludge contains about 64% Fe ІІ and ІІІ oxides and some other essential elements for plant growth. The slag also contains 17% iron oxides, 52.8% calcium oxide as well as considerable amounts of some other elements. Treatments included a control, Fe-EDTA foliar spray with 5 in 1000 concentration, application of sludge in 4 levels (L1, L2, L3 and L4 equal to 5.83, 13.33, 20.83 and 26.67 ton/ha, respectively) and application of slag in 4 levels (S1, S2, S3 and S4 equal to 3.20, 7.28, 11.36 and 15.44 ton/ha, respectively) which supply 1, 2, 3 and 4 times as much as soil test recommends, based on AB-DTPA extractable Fe in the soil. Corn (Zea mays) single cross 704 was planted for the experiment. Applications of the two compounds increased the soil extractable Fe and Mn, decreased Mg but the treatment did not change the soil-extractable Zn, Cu and Ca. The corn yield also increased due to the applications of the two compounds and the maximum yield was related to L3, L4, S3 and S4 treatments. The foliar application treated the leaf chlorosis and increased the silage, grain and leaf + stalk yields however, this was not as efficient as sludge and slag application. Also applications of the two compounds increased the Fe, Mn, Zn, Cu, Ca and Mg uptake by corn. The L3 and S3 treatments can be recommended as the proper levels of these compounds as iron fertilizer.
A. Kazemi, H. Shariatmadari, M. Kalbasi,
Volume 16, Issue 59 (spring 2012)
Abstract

Iron deficiency is most widespread among plant nutrients. Nowadays, different materials such as inorganic salts, organic chelates, soil acidifying materials and industrial wastes are used to correct iron deficiency. Slag and convertor sludge of steel factories are among the industrials wastes for this purpose. These materials contain considerable amount of iron produced in large quantities every year. Application of slag and convertor sludge to soil may affect bioavailability and chemical forms of iron in soil. Sequential chemical extraction technique has been widely used to examine these chemical forms, and thus to better understand the processes that influence element availability. It was, therefore, the objective of this study to investigate the application effect of slag and convertor sludge of Esfahan Steel Mill on the chemical forms of iron, distribution of these forms and bioavailability of iron in surface (0-20cm) and subsurface (20-45cm) soil of three research fields. The results showed that more than 99% of the applied Fe occurred in residual, Fe oxide and hydroxide and free forms. Application of slag and convertor sludge for three consecutive years increased chemical forms and DTPA extractable iron in surface and subsurface soil of three fields.
Majid Hejazi Mehrizi, Hossein Shariatmadari, Majid ََafyuni,
Volume 17, Issue 64 (summer 2013)
Abstract

Application of sewage sludge has been considered as an organic fertilizer in arid and semi-arid regions of Iran. This study was conducted to investigate cumulative and residual effects of sewage sludge on soil inorganic fractions and their relation to phosphorus (P) availability. Two levels of application (50 and 100 Mg ha-1) and three consecutive times of sewage sludge application (1, 3 and 5 years) with a control treatment were studied in a randomized complete block split plot design with three replications. Composite soil samples were collected from 0-30 depth at the end of 5th year of application. Increasing the rate and application year of sewage sludge enhanced dicalcium phosphate (Ca2-P), octacalcium phosphate (Ca8-P), apatite (Ca10-P), aluminum phosphate (Al-P), iron phosphate (Fe-P) and available P but decreased occluded P (OC-P). Residual effect of sewage sludge application resulted in increased inorganic fractions in blocks treated for 1 year compared to control. Positive correlations were observed between inorganic P fractions and Olsen P, wheat yield and P uptake (except OC-P). We concluded that inorganic P fractions and P availability increased in sewage sludge amended soil.
B. Daneshbakhsh, A. H Khoshgoftarmanesh, H. Shariatmadari,
Volume 17, Issue 65 (fall 2013)
Abstract

This research was carried out in a hydroponic culture to investigate the effect of Zn nutrition on phytosiderophore release by roots of three bread wheat genotypes (Triticum aestivum L. cvs. Rushan, Kavir, and Cross) differing in Zn-efficiency. The wheat seeds were germinated in sterile sand and two weeks later the plants were transferred to nutrient solution containing different Zn levels. Phytosiderophore released by plant roots was collected ten days after applying Zn treatments and measured using resin-Cu-mobilization test. A month after their transfer to nutrient solution, the plants were harvested and Fe and Zn concentrations in root and shoot were measured, and total amounts (uptake) of these nutrients were determined. Zinc addition increased concentration and total amount of Fe and Zn in shoot in Rushan genotype, while it had no significant effect on concentration and total amount of Zn in shoot and root of Kavir and Spring Back-Cross-Rushan genotypes. Addition of Zn to the nutrient solution decreased concentration and total amount of Fe in shoot of all wheat genotypes. On the other hand, Zn nutrition increased root Zn concentration in Rushan and Kavir genotypes, while it resulted in significant decrease of root Zn concentration in Back-Cross-Rushan genotype. Effect of Zn nutrition on the amount of phytosiderophore release by roots of wheat genotypes was different. Zinc nutrition resulted in an increase of phytosiderophore release by roots of Rushan, while it had no significant effect on phytosiderophore release in other wheat genotypes.
A. Mousavi, F. Khayamim, H. Khademi, H. Shariatmadari,
Volume 18, Issue 67 (Spring 2014)
Abstract

In Iran, no research has yet been performed on potassium release from feldspar in comparison with that from muscovite. The objective of this research was to compare potassium release kinetics of these minerals as influenced by organic and inorganic extractants using successive extraction method. The experiment was carried out in a completely randomized design with a factorial combination. Treatments consisted of three kinds of K-bearing minerals (Muscovite, and Yazd and Ward feldspars), three extractants including CaCl2, oxalic and citric acids of 0.01 M concentration and 6 times of extraction (1, 2, 8, 24 and 48 hours). The results indicated that the potassium release from muscovite was 6-8 times higher than that from feldspars. The type of extractant significantly affected potassium release. Potassium release by organic extractants was 2.5-3 times higher than that by CaCl2 as an inorganic extractant. Different kinetic equations showed that power function, parabolic diffusion and first order equations adequately described K release whereas Elovich equation did not. Among the three equations, power function equation was selected as the best model describing K release from the minerals. Based on the selected kinetic equations, it seems that potassium release from K-bearing minerals is controlled by diffusion process.
F. Alsadat Hodaee Koskkoee, H. Shariatmadari, M. Hamidrpour, M. Shirvani,
Volume 18, Issue 70 (winter 2015)
Abstract

Sorption hysteresis in soil constituents has important environmental implications such as pollutant transport and bioavailability. This research was carried out to study sorption reversibility of cadmium (Cd) on natural zeolite. Sorption isotherms were derived by sorption of Cd (П) from solutions containing different concentrations of Cd in the range of 1 to 10 mg L-1 using a 24h batch equilibration experiment. Desorption of Cd(II) was studied with the clay samples initially treated with the metal loadings of 50 and 100% maximum sorption capacity (SCmax) during the sorption study. Sorption isotherms of Cd were well described by the Freundlich and Coble-Korrigan models (R2=0.96). Desorption isotherms of Cd from zeolite showed little deviation from sorption data indicating reversible sorption. On the other hand, the results revealed no hysteresis. The average amount of 71.75 % of the initially sorbed Cd was desorbed from zeolite after five successive desorption steps. Release of such a relatively high proportion of sorbed Cd indicates that zeolite is an effective sorbent for the repeated purification of polluted water and wastewater.


S. A. M. Mirmohammady Maibody, S. Dybaie, H. Shariatmadari, N. Baghestani,
Volume 21, Issue 2 (Summer 2017)
Abstract

The adaptability of Haloxylon appilium to adverse environmental conditions and especially its capability for an appropriate establishment in saline and desert soils has introduced this plant as a suitable means for biological methods to stabilize sand dunes, control erosion and prevent desertification in arid regions. In order to evaluate the ecophysiological characteristics of Haloxylon appilium some characteristics of soils under the long term establishment, survival and development of this plant and ion composition of this plant growing in Yazd province in thirty two growing trees of similar ages and traits within 8 locations of Chah Afzal and Ashkezar were investigated and their height (H), crown diameter (CD) and the above ground biomass index (Yi) were measured. Also, after cutting the trees from their collars, soil profiles were dug underneath the tree locations and soil samples were taken at depths of 0-30, 30-60, 60-90 and 90-120cm from four sides of each profile. The samples were then analyzed for Electrical Conductivity (EC), pH and Cl, Na, Ca, Mg, K concentrations in 1:5 soil to water extracts. The results showed statistically significant differences in soil parameters between the two regions, except for pH and Mg concentrations. The ion concentration of the plants in the two regions showed statistically significant differences for only Cl in shoots and Ca in roots. Based on the plant growth indices the Chah Afzal and Eshkezar regions were respectively evaluated as suitable and unsuitable for Haloxylon appilium growth. In spite of a higher salinity, the higher Ca and K concentration and lower Na/K ratio of Chah Afzal soils may explain the better plant performance in this region against Eshkezar, however, comprehensive researches on application of Ca and K fertilizer are needed to confirm this hypothesis

A. R. Keshtkar, H. Shariatmadari, H. R. Naseri, M. Tazeh,
Volume 21, Issue 4 (Winter 2018)
Abstract

Nowadays, inappropriate land use and degradation of natural resources have led to increase of flood, soil erosion etc. In such critical conditions, an integrated planning in natural resource management with the goal of control, reclamation and conservation seems to be necessary and these kinds of purposes can be reached by an integrated watershed management. Comprehensive management of watersheds is a coordinated and harmonic management of physical, biological, social and economic systems, which provides conditions that minimize the negative impact on resources while safeguarding the interests of the community. In this research, in line with the goals of resource management, the impacts and consequences of physical, economic and ecological criteria on vegetation condition changes were evaluated with focus on elimination of flood and soil erosion issues in Nahrein watershed (with the area of 18800 ha located in Tabas). The evaluation was done by considering four management activities: management of grazing, planting, seeding, and sowing. The prioritization of the scenarios was carried out using analytical hierarchy process (AHP) technique. Then, based on the suggestions and comments from relevant experts, the evaluation of available options was done by pairwise comparison matrix method. After calculations, economic criteria was selected as the most important criteria and management activity of sowing and scenario No. 16 were introduced as the most appropriate reform plan and scenario for the study area which is selected based on available criteria

V. Shahrokh, H. Khademi, H. Shariatmadari,
Volume 23, Issue 2 (Summer 2019)
Abstract

Despite the great importance of potassium applied as a fertilizer in the orange orchards, no information is currently available regarding the rate of potassium release from rhizosphere and the bulk soils of such trees. The objectives of this study were to investigate the weathering of micaceous minerals and their non-exchangeable K release and also, to examine the status of different forms of K in the rhizosphere and bulk soils of orange orchards with different ages in Darab, Fars Province. Samples were, accordingly, taken from the rhizosphere and bulk soils of orange orchards with the ages of 5, 10 and 20 years; also, virgin soils (control) were obtained from three soil depths including 0–30, 30–60, and 60–100 cm. Water soluble, exchangeable and nonexchangeable K, and the clay mineralogy of the soils were determined. The results demonstrated that the concentration of soluble and exchangeable K in the cultivated soils was less than that in the control soil and that the concentration of nonexchangeable K in the soils of 20-year-old orchards was less, than that in other soils. Soluble and exchangeable K values decreased with depth in all soils. Clay mineralogy investigation also showed that the quantity of illite decreased and that of smectite and illite-smectite increased as the age of orange trees was raised. With increasing the age of orange trees and root development, more potassium could be taken up from soil and more changes occurred in the soil minerals. In order to avoid a very high decline in the reserved K in the soils under orange trees, particularly in the orchards with older trees, K fertilization has to be taken more seriously based on the soil testing results.

F. Jafari, H. Khademi, H. Shariatmadari, S. Ayoubi,
Volume 23, Issue 4 (winter 2020)
Abstract

The production of compost and vermicompost from manure and different organic residues and also, their enrichment with some fertilizers and other treatments have been extensively investigated. However, no study has yet been conducted on the enrichment of composted and vermicomposted manure with clay minerals. This research was, therefore, carried out to investigate the selected properties of phlogopite enriched manure during the composting process with and without earthworm activity. The experiment was conducted in plastic containers with the lid under an average temperature of 27.5°C and the humidity of 42.5% using a factorial arrangement in a completely randomized design with 3 replications. Factors included levels of phlogopite addition (0%, 20% and 40% by weight), with or without the earthworm Eisenia fetida for different time periods of 1.5, 3, 4.5 and 6 months. At the end of the experiment, the total of organic carbon, nitrogen, potassium, magnesium, and iron, as well as the contraction the available magnesium, potassium and iron, was determined. The results showed that the percent of organic carbon was decreased while the total nitrogen, the total and available potassium, iron and magnesium were increased with time. The results also indicated that a significant percentage of the total content of the elements in all treatments without phlogopite was available. However, in treatments containing phlogopite, the amount of the available elements was increased slowly with time. This was Due to the weathering of phlogopite mineral and the decomposition of manure. In general, it seems that the enrichment of composted and vermicomposed manure with phlogopite can guarantee the supply of nutrients such as potassium, iron and magnesium in a longer period, as compared with the ordinary composts.

Sh. Shahmansouri, M.r. Mosaddeghi, H. Shariatmadari,
Volume 27, Issue 1 (Spring 2023)
Abstract

According to the rapid population growth, the challenging issue of production of economic and suitable food sources has led to greater attention to soilless culture greenhouse production systems. Components of growth media in horticulture are usually selected based on physical and chemical properties and their abilities in providing enough water and oxygen for roots. This study was conducted to investigate the feasibility of using some agricultural wastes (i.e., sawdust and wheat straw) and three rockwool types (i.e., raw, ground, ground, and sieved) as substitutes for commercial greenhouse growing media such as cocopeat and perlite. Several hydraulic, aeration, and chemical properties including easily available water (EAW), air after irrigation (AIR), water holding capacity (WHC), water buffering capacity (WBC), saturated water content (θs), bulk density (BD), total porosity (TP), water drop penetration time (WDPT), pH, and electrical conductivity (EC) were measured and scored in the growth media. Raw rockwool had larger particles compared to ground rockwool, which resulted in its faster water release. Processing of the rockwool decreased the saturated water content and saturated hydraulic conductivity due to the decrease in particle size. Four growth media were scored as very good and one was scored as good. The highest and lowest scores belonged to sawdust (34) and ground rockwool (30), respectively. The studied growth media with high TP, EAW, and WHC and low BD, EC, and WDPT can be used individually or combined with other commercial substrates for greenhouse growth media.


Page 2 from 2     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb