Showing 29 results for Rezaei
M Rezaei Pasha, K Shahedi, Q. Vahabzadeh, A. Kavian, M. Ghajar Sepanlou, P. Jouquet,
Volume 23, Issue 2 (Summer 2019)
Abstract
One of the management practices to reduce the harmful effects of chemical fertilizers and to protect soil and water resources is applying a combination of organic and chemical fertilizers that can better than using them separately. Therefore, in order to understand and identify the effectiveness of this management practice, it is necessary to examine runoff and sediment production. This study was carried out in an agricultural sloping land located in the North of Iran, near Sari city. For this purpose, runoff measurement plots of 1 × 5 m were set up under natural rainfall based on a randomized block experimental design. Soil samples were measured at 0-10 and 10-20 cm depths. In this study, parameters such as runoff (volume, nitrate content, sediment yields), soil physical features (porosity and infiltration coefficient), and soil chemical properties (EC, OC, N, CEC, pH) were measured. The results showed that among soil chemical and physical properties, just N, EC and pH significantly influenced the Municipal Solid Waste Compost. A PCA was carried out, showing that these treatments explained 74.35% of the total variance of the results. Accordingly, it could be stated that using soil and water conservation management practices can rapidly significantly improve the soil properties in the sloping lands.
A. Foyouji Shahrezaei, M. A. Hajabbasi,
Volume 23, Issue 3 (Fall 2019)
Abstract
A well healthy environment can quietly affect the life quality and human community. In recent decades the need for and utilizing fossil had increased and thus the environmental pollutions including for soil has also increased. Petroleum contaminated soils are not suitable for agricultural, residential and social usage and cause economical, ecological and agricultural damage. To cope with this challenge, the use of additives such as carbon nanotubes has expanded to soil, but the use of these elements has raised concerns about their risk to biological processes and systems, such as effects on physiology and plant growth, and there have not been much studies on this issue. In order to investigate the interaction of soil petroleum pollution and carbon nanotubes on some plant characteristics such as wet mass, dry matter and plant length, seed and maize seedling were separately treated with 0, 10, 20 and 40 mg/l carbon nanotubes at the beginning. In pots containing soil with three levels of petroleum pollution, 2.43, 2.76 and 4.16% were cultivated with 3 replications. A completely randomized design was used in the form of factorial experiments. Wet mass, dry matter and length of shoot and root of plants were determined. The results showed that petroleum pollution had a negative effect on the growth characteristics. It was also observed that application of carbon nanotubes to maize (whether seed or seedling) depending on the concentration of these materials, could have different effects on plant growth parameters.
A. R. Vaezi, S. Rezaeipour, M. Babaakbari,
Volume 23, Issue 3 (Fall 2019)
Abstract
Limited information is available on the effect of residues rates and slope direction on dryland wheat
(Triticum aestivum L.) yield. This study was carried out to determine the effects of residues rates and tillage direction on grain yield and yield components of the Sardary wheat in a dryland region in Zanjan. Five wheat residues rates (0, 25, 50, 75 and 100% surface cover) were applied and incorporated into soil in two slope directions (along the slope and on contour lines) using the randomized complete blocks design with three replications in a land with 10% slope steepness. Overall, thirty plots with 2m × 5 m dimensions were installed in the field and wheat grain yield and yield components were determined for growth period from 2015-2016. Results indicated that grain yield and yield components were significantly affected by the residues rates and slope direction and their interaction. In contour tilled plots, wheat grain yield (1.78 to per hectare), thousand grain weight (42.26 kg) and wheat height (55.11 cm) were 5.32, 5.01, 16.19 and 1.36 percent more than the plots tilled along the slope. The highest grain yield was found in 75% of residue (2.45 ton per hectare) under contour line direction which was about 53% bigger than control treatment (0% straw mulch) under along the slope. This study indicated that the application of straw mulch before cultivation and incorporating into soil using contour line tillage are proper soil management methods to obtain higher wheat yield in this dryland region.
A. Rezaei Ahvanooei, H. Karami, F. Mousavi,
Volume 23, Issue 3 (Fall 2019)
Abstract
In this research, by using FLOW3D, the performance of non-linear (arced) piano key (PKW-NL) in plan and linear piano key weir (PKW-L), with equal length of weir, was compared. Results showed that nonlinearity of the weir caused 20% increase in the discharge coefficient. Investigating the velocity contours for these two weir models also showed that maximum velocity within the PKW-NL weir structure is about 30% lower than the PKW-L weir. Also, the performance of non-linear piano key weir was evaluated under inward (PKW-IC) and outward (PKW-OC) curvatures to the channel. Results showed that in the case of PKW-IC weir, the discharge coefficient was increased by 8% as compared to the PKW-OC weir. Investigating the pressure contours for these two weir models also shows that the average pressure within the PKW-IC weir structure is about 5% higher than the PKW-OC weir. This increase in pressure leads to a decrease in the speed and better distribution of flow over the weir keys.
R. Rezaeinejad, H. Khademi, Sh. Ayoubi, H. Jahanbazy Goujani,
Volume 24, Issue 2 (Summer 2020)
Abstract
In arid and semi-arid ecosystems, isolated trees significantly influence the soil properties and can have a great impact on the soil fertility as well as the conservation and improvement of soil quality. This investigation was conducted to examine the influence of wild almond (Amygdalus arabica Olive.) trees having different ages on the physical and chemical soil properties. Soil samples were taken from the depths of 0-20, 40-60, 80-100 and 120-140 cm at two distances from the tree crown including the basal area (referred to as the rhizosphere) and the canopy edge in 3 replications for the 30, 50, and 130 year-old stands and also, in a control site, all in the Anjarak area, southeast of Baft city, Kerman Province. Soil properties including pH, EC, organic matter, calcium carbonate equivalent, available and non-exchangeable potassium and soil texture were measured in all samples. The results indicated that the measured soil properties in different depths in the study area had been influenced by the age and the canopy size of the wild almond trees. The highest and the lowest amount of pH were found in the control soil and the soils covered by 130 year-old trees, respectively. Besides, the electrical conductivity of the soil under the tree crown was more than that of the soil in the canopy edge. The accumulation of C, N, and other nutrients under the tree canopies resulted in the creation of fertility islands surrounding the trees. Furthermore, the soil physical and chemical properties were greatly improved with the increase in the tree age of Amygdalus arabica Olive. As the conclusion, wild almond trees could have very positive effects on soil properties. Therefore, it is essential to protect the trees. Otherwise, the risk of soil quality reduction would be increased and soils might become more susceptible to soil erosion.
A.r. Vaezi, S. Rezaeipour, M. Babaakbari, F. Azarifam,
Volume 27, Issue 3 (Fall 2023)
Abstract
Improving soil physical properties and increasing water retention in the soil are management strategies in soil and water conservation and enhancing crop yield in rainfed lands. This study was conducted to investigate the role of tillage direction and wheat stubble mulch level in improving soil physical properties in rainfed land in Zanjan province. A field experiment was done at two tillage directions: up to the downslope and contour line, and five stubble mulch levels: zero, 25, 50, 75, and 100% of land cover equal to 6 tons per hectare. A total of 30 plots (2 m×5 m) were created. The results indicated that water infiltration and water content were considerably affected by tillage direction, whereas its effect on water holding capacity was not significant. This physical property of the soil was influenced by the inherent properties of the soil, including particle size distribution. The change of up to down tillage direction to the contour line increased soil infiltration to 11% and water content to 6%. The physical soil properties were wholly influenced by mulch consumption. Soil water content increased in mulch treatments along with water holding capacity and infiltration rate. The highest volumetric water content was at 100% mulch level (10.62%) which was 11% more than the control treatment. However, there was no significant difference between 100% and 75% mulch treatment. This revealed that the application of 75% stubble mulch in contouring tillage is a substantial strategy for improving soil physical properties and controlling water loss in rainfed lands of semi-arid regions.
S. Afshari, H. Yazdian, A. Rezaei,
Volume 27, Issue 3 (Fall 2023)
Abstract
Awareness of the types of vegetation changes and human activities in different parts has particular importance as basic information for different planning. It is very difficult and expensive to collect information about the continuous changes in vegetation cover by conventional methods. Therefore, the use of new technologies such as remote sensing is very beneficial. The objective of the present research was to introduce the appropriate vegetation index and determine the vegetation cover of the Abshar network. NDVI, EVI, SAVI, and MSAVI vegetation indices were calculated from 2000 to 2021 every year and monthly in the Google Earth Engine system using Landsat 7 satellite images of the ETM+ sensor. Also, the SPI drought index was calculated using the precipitation statistics of Kohrang station in Excel software. The results of the comparison of four indices showed the superiority and higher performance of NDVI compared to the other three indices for detecting vegetation changes. Then, vegetation changes were calculated. The results showed that the trend of agricultural development in the Abshar network is downward and has a direct relationship with precipitation and the SPI drought index. Also, the results indicated that the SPI drought index was equal to -1.73in 2008, which showed a severe drought in the region. Comparing these results with the vegetation area showed that the vegetation area was 35721 hectares in this year and the year after the drought (2009), the vegetation area was 22950 hectares. Therefore, there was a decrease in precipitation and a sharp decrease in the SPI index in 2008, which led to a sharp decrease of 35% in the vegetation area in 2009.
M. Khajeh, C. B. Komaki, M. Rezaei, V. Sheikh, L. Ebadi,
Volume 28, Issue 2 (Summer 2024)
Abstract
In the future, the risk of land subsidence due to water resources shortage crisis and improper water resources management will become more and more dangerous. It is necessary to assess and identify areas susceptible to subsidence risk and take necessary actions to reduce risks related to land subsidence. In this study, first, the risk of land subsidence was identified and evaluated using a radar interferometry method called LiCSBAS. Then, the spatial relationship between the occurrence of land subsidence hazard and effective factors such as ground elevation, slope, slope aspect, lithology, land use, groundwater decline, distance from rivers, distance from faults, topographic moisture index, and arc curvature was investigated using the random forest (RF) model. In the end, the land subsidence hazard sensitivity map was prepared after calibrating the random forest algorithm. The analysis of LiCSBAS interferometric time series data from 2015 to 2022 showed that the center of the Marvdasht-Kharameh plain and adjacent agricultural areas are continuously subsiding and the mean deformation rate map showed a subsidence rate of 11.6 centimeters per year. The results of determining the spatial relationship between subsidence occurrence and effective factors confirmed the positive impact of distance from rivers, urban and agricultural land uses, depth of bedrock (aquifer thickness), groundwater decline, and alluvial and fine-grained formations on this phenomenon. Also, the results of subsidence modeling using the random forest algorithm showed that factors such as bedrock depth, groundwater decline, land use, and geology have the greatest impact on the potential for subsidence occurrence in the study area. Also, based on the results, about 3 to 4 percent of the areas are in the very high and extremely high-risk classes of land subsidence, especially in the center and suburbs of Mervdasht. Therefore, water resources management and control and developing a systematic program to reduce subsidence risk and aquifer recharge conservation in Merudasht-Kharameh Plain is essential.
V. Rezaei, S. S. Eslamian, J. Abedi Koupai, A. R. Gohari,
Volume 28, Issue 2 (Summer 2024)
Abstract
The relationship between intensity-duration-frequency of rainfall is a significant tool for estimating flood discharge. According to the sparsely available rain gauge stations and the development of technology, it is possible to use satellite rainfall data with different temporal and spatial resolutions. PERSIANN rainfall data with a time resolution of 1 and 6 hours were used in this research. Also, the spatial resolution of these data is 0.04 x 0.04 degrees. Rainfall data from synoptic stations around the Kan basin were also used. Three common continuous probability distributions of Gamble, Pearson type 3, and Log Pearson type 3 with return periods of 2, 5, 10, 25, 50, and 100 years were investigated to calculate and check the IDF curve. In general, the precipitation intensity obtained from Gumble's method was more than Pearson Type 3's method. Log Pearson type 3 distribution did not provide acceptable results in this research. The two interpolation methods of inverse distance weighting and empirical Bayesian kriging were used to generalize the frequency intensity curves to the entire Kan basin. The results showed little difference between these two methods, except for Pearson type 3 probability distribution.