Search published articles


Showing 401 results for Ag

E. Vaseghi , A. Esmaeili,
Volume 12, Issue 45 (10-2008)
Abstract

This study used a Ricardian approach to measure the impact of climate change on Iranian wheat production and analyzed potential impacts of further climate changes. The study utilized time series data for the period 1984-2004 pooled over 17 provinces. Results showed that climate change has significant nonlinear impacts on net revenue per hectare of wheat in Iran. The results also showed that rise in temperature and reduction in rainfall by the year 2100 will cause the reduction in land value by 41 %, because of increased greenhouse gas emission.
S. M. Mansouri, R. Ebadi, M. Mobli,
Volume 12, Issue 45 (10-2008)
Abstract

Onion thrips (Thrips tabaci Lind.) is one of the important factors which indirectly restrict the proper yield of onion (Allium cepa L.). Therefore, finding tolerant cultivars to onion thrips is important. Because of many small florets, cross pollination in onion which is a biennial plant by using polycross method for breeding is suitable and easy. To produce polycross seed, bulbs of 9 self pollinated onion genotypes were planted in the shape of equilibrium lattice design for 9 treatments in May 2002. To study tolerance to onion thrips and assess other agronomical characteristics, the polycross seeds produced from free pollination and self pollinated plant seeds (totally 18 genotypes) were planted in a randomized block design with four replications. The main plots were sprayed and not sprayed, and sub-plots were onion genotypes. From August to October 2003, samples were taken from each plot bi-weekly, and number of thrips, and percentage of injury on plants were recorded. As a result of this study, Azarshahr self pollinated genotype showed maximum population density of thrips (22.24) and injury, but Ghom and Abarkooh genotypes showed the lowest amount (2.65 and 5.68 respectively) among all genotypes. Among pollycross genotypes, Ghom and Kashan genotypes showed low population densities (4.3 and 4.24 respectively) and injury, but Azarshahr and Tarom showed high population densities (20.66 and 19.84 respectively) and percentage of injury. Generally, polycross reduced population density of thrips and percentage of injury.
N Rouhani, H Yang, S Amin Sichani, M Afyuni, S.f Mousavi, A.a Kamgar Haghighi,
Volume 12, Issue 46 (1-2009)
Abstract

Iran, with an average annual precipitation of about 252 mm (413 BCM) and renewable freshwater resources of 130 BCM, has irregular distribution of water resources. With a high population growth rate, agriculture remains the greatest water user in Iran but its production still does not meet the total food demand of the country. Due to unreliable water availability, the competition for water from other sectors and the increasing demand for food and better diets, Iran will experience water stress. In this study, virtual water trade in relation to water resources availability has been assessed as a way of relaxing water stress in Iran. The results showed that from the 21 food products, cereals, pulses, nuts and oilseeds are water-intensive crops according to their estimated virtual water content, while fruits, vegetables and industrial crops are not water-intensive. Considering the volume of virtual water entering the country through food imports, more water will be available for other essential uses. However, the virtual water trade has been developed rather unconsciously regarding water use and crop water productivity during the past two decades. For instance, wheat with a share of 58.5% in the virtual water import to Iran, was the dominant imported crop during 1983-2003. By importing 10.4 Mt of wheat, 11.6 BCM of water has been saved within the country during 1999-2003. However, Iran became self-sufficient in wheat production in early 2005. Consequently, this latest drive for self-sufficiency in the production of wheat, as a water-intensive crop, put tremendous pressure on domestic water resources. The trend in crop trade in terms of quantity and virtual water for other groups of crops has also been shown in the study. Seemingly, crop production and import have been greatly influenced by the weather conditions. With the increasing water scarcity, the role of virtual water in food security is expected to rise continuously in Iran. Thus, conscious virtual water trade as a policy measure in water management and judicious adjustment in agricultural structure will ensure sustainable food security and water availability in Iran.
S.f Mousavi, J Mohammadzadeh Habili, M Heidarpour,
Volume 12, Issue 46 (1-2009)
Abstract

After construction of a dam across a river, sediments settle behind the dam. It is important for dam designers to estimate the rate and distribution of sediments in the reservoir. In this study, the accuracy of area-increment and area-reduction empirical methods to predict the sediment distribution of Dez, Dorudzan and Shahid Abbaspour reservoirs is evaluated. The last measurement of sediment in these reservoirs was in 2003 (Dez), 2005 (Dorudzan) and 2005 (Shahid Abbaspour). The comparison between actual sediment distribution and predicted sediment distribution by using area-increment and area-reduction methods showed the maximum error at the depth of sediment behind the dam. At higher elevations, the error decreased and reached zero when the elevation was maximum. For Dorudzan reservoir, which has the least sediment volume (31 Mm3), the area-reduction method is less accurate, as compared to the area-increment method (81% vs. 37.5%). For Dez and Shahid Abbaspour reservoirs, where their sediment volume is high (608 and 737 Mm3, respectively), the error of the two methods is relatively equal (in Dez, 29% for both methods, and in Shahid Abbaspour, 22% for area-reduction and 25% for area-increment methods). After long-time sedimentation, the shape factor decreased and reservoir type of all three reservoirs changed to 2.
Sh Ayoubi, F Khormali,
Volume 12, Issue 46 (1-2009)
Abstract

Understanding distribution of soil properties at the field scale is important for improving agricultural management practices and for assessing the effects of agriculture on environmental quality. Spatial variability within soil occurs naturally due to pedogenic factors as well as land use and management strategies. The variability of soil properties within fields is often described by classical statistical and geostatistical methods. This research was conducted to study what factors control the spatial variability of soil nutrients using an integration of principal component analysis and geostatistics in Appaipally Village, Andra Pradesh, India. 110 soil samples were randomly collected from 0-30 cm and prepared for laboratory analyses. Total N, available P, Ca, K, Na, Mg, S, B, Mn, Fe, Zn were measured using standard methods. Statistical and geostatistical analysis were then performed on raw data. The results of PCA analysis showed that 4 PC's had Eigen-value of more than 1 and explained 71.64 % of total variance. The results of geostatistical analysis revealed that three PC's had isotropic distribution based on surface variogram. Spherical model was fitted to all PC's. Ranges of model were 288 and 393 m for PC1 and PC3 respectively. On the other hand the range for PC2 was significantly different (877m). The most important elements in PC2 such as Fe, Mn, and Zn probably had similar range of effectiveness (700-900m). The comparison of PC's distributions indicated that PC1 and PC3 including total N, available Mg, K, Cu, Ca and P, were in accordance with farming plots dimensions and management practices. Therefore, it is necessary to improve the appropriate fertilizers used by farmers. The pattern of PC2 distribution was not consistent with farmer's plots, but had the best concordance with soil acidity. Therefore, the most correlated elements with this PC including Fe, Mn, and Zn are mainly controlled by soil acidity and not affected by management practices. However, spatial variability of these elements in areas lower than critical values should be considered for site-specific management.
M Karami, M Afyuni, Y Rezaee Nejad, A Khosh Goftarmanesh,
Volume 12, Issue 46 (1-2009)
Abstract

Sewage sludge application on farmland as fertilizer is commonly practiced in many countries. Sewage sludge is rich in macro and micronutrients. However, high concentration of heavy metals in sludge may cause pollution of soil, groundwater and human food chain because of toxic metals uptake by crops. The objective of this study was to determine residual and cumulative effects of sewage sludge on concentration of Zn and Cu in soil and wheat. Different levels of 0, 25, 50 and 100 Mg ha-1 of sewage sludge were applied to the soil for four years. To study the cumulative and residual effects of the sewage sludge, applications were repeated on three fourth of each plot in the second year, on one half of plots in the third year and on one fourth of plots in the fourth year. Wheat was grown in the plots. After the fourth year, soil samples from the 0-20 cm depth of the different parts of the plots were taken and analyzed. After harvesting the wheat, roots, stems and grains were separately analyzed for the heavy metal concentrations. Cumulative sewage sludge application significantly (P≤0.05) increased the total and DTPA-extractable concentration of Zn and Cu in soil. Residual sewage sludge in the soil also increased the total and DTPA-extractable concentration of Zn and Cu. Single sludge applications at different rates increased the DTPA-extractable concentrations of heavy metals. In subsequent years with no further sludge application, DTPA–extractable metal concentrations in soil decreased continuously, approaching the levels in the control. However, even after four years, DTPA-extractable concentration of Zn in plots receiving more than 50 Mg ha-1 and Cu in plots receiving more than 25 Mg ha-1 sludge, were still significantly higher than control. DTPA-extractable concentrations of metals were closely correlated with total concentrations. Sewage sludge had a significant effect on concentration of Zn and Cu in stems and grains. Cumulative effects on Zn and Cu uptake by stems were more than residual effects. The results of this study show that cumulative and residual effects of sewage sludge application increased concentrations of micronutrients in soil and wheat.
H Shariatmadari, Y Rezainejad, A Abdi, A Mahmoudabadi, M Karami,
Volume 12, Issue 46 (1-2009)
Abstract

Many researchers have reported positive effects of converter sludge and slag, two by-products in Isfahan iron melting factory. In this work, the optimum rate of application and the availability of some essential elements (for plant growth) in the converter sludge and slag for corn were investigated. The converter sludge contains about 64% Fe ІІ and ІІІ oxides and some other essential elements for plant growth. The slag also contains 17% iron oxides, 52.8% calcium oxide as well as considerable amounts of some other elements. Treatments included a control, Fe-EDTA foliar spray with 5 in 1000 concentration, application of sludge in 4 levels (L1, L2, L3 and L4 equal to 5.83, 13.33, 20.83 and 26.67 ton/ha, respectively) and application of slag in 4 levels (S1, S2, S3 and S4 equal to 3.20, 7.28, 11.36 and 15.44 ton/ha, respectively) which supply 1, 2, 3 and 4 times as much as soil test recommends, based on AB-DTPA extractable Fe in the soil. Corn (Zea mays) single cross 704 was planted for the experiment. Applications of the two compounds increased the soil extractable Fe and Mn, decreased Mg but the treatment did not change the soil-extractable Zn, Cu and Ca. The corn yield also increased due to the applications of the two compounds and the maximum yield was related to L3, L4, S3 and S4 treatments. The foliar application treated the leaf chlorosis and increased the silage, grain and leaf + stalk yields however, this was not as efficient as sludge and slag application. Also applications of the two compounds increased the Fe, Mn, Zn, Cu, Ca and Mg uptake by corn. The L3 and S3 treatments can be recommended as the proper levels of these compounds as iron fertilizer.
M Valipour, M Karimian Eghbal, M.j Malakouti, A Khosh Goftamanesh,
Volume 12, Issue 46 (1-2009)
Abstract

Salinization and alkalization are considered spatiotemporal dynamic soil degradation processes. In order to investigate the effects of agricultural activities on land degradation and soil salinity, Shamsabad area in Qom province was selected. Aerial photos (1955) and satellite images (1990-2002) were used to examine the changes in land use. Soil samples were collected from 25 locations in the study area from 0-50 cm and 51-100 cm depth at each location. For comparative purposes, sampling locations in this study were similar to locations used for salinity study in 1983. For each sample, pH, electrical conductivity (ECe), base saturation percentage, exchangeable sodium, lime and texture were measured. Land use and salinity maps were created by using geographic information system (GIS) softwares. Results revealed an increase of 9.5 times in cultivated lands in 47 years. Increase in agricultural activities in the study area has also intensified the pressure on water resource in the area, lowering ground water tables and degrading water quality. In the 0-50 cm soil depth, the average soil ECe was 6.5 dS/m in 1983, which increased to 10.7 dS/m in 2005. If soil salinity trend and pressure on water resources continue, large part of Shamsabad area is expected to change to desert in near future years.
S Zandsalimi, M Mosadeghi, A Mahbobi,
Volume 12, Issue 46 (1-2009)
Abstract

Organic fertilizers are the sources of many human-pathogenic microorganisms which potentially threaten the human health. This study was carried out to explore the possible effects of soil and manure types on filtration, transport and fate of manure-borne bacteria through undisturbed soil columns. The manure treatments consisted of cow manure, poultry manure and sewage sludge which were distributed at the rate of 10 Mg ha-1 on the surfaces of intact columns of two sandy clay loam and loamy sand soils. The manure-treated soil columns were leached by tap water with similar unsaturated flux of 4.8 cm h-1 up to four pore volumes (PV). The influent and leachate were sampled at different PVs. Gram-negative bacteria concentrations were determined for the influent and the columns’ leachate. Average influent concentration, average effluent concentration, relative filtration, and transported bacteria fraction during the leaching events were determined. Significant differences (P<0.05) were observed between the poultry manure and the other two manures in terms of average influent (i.e. manure-released) bacteria concentration. Stable structure and preferential pathways facilitated the bacteria movement in the sandy clay loam soil columns. The loamy sand soil strained 1.45 times more bacteria than the sandy clay loam soil due to its weak structure and blocked-dead pores. Relative contamination of the effluent was higher for poultry manure when compared with the other fertilizers. The low ionic strength of sewage sludge suspension caused the lower filtration of bacteria through the soil columns. The high concentration of soluble organics in cow manure resulted in a relative transport of the bacteria 1.12 times greater than the poultry manure. In general, management of organic fertilizers especially household poultry manure, as a considerable source of pathogenic bacteria, is important to control the environmental risks of pathogenic pollutions. Moreover, the soil texture and structure significantly affected the fate of manure-borne bacteria.
M Mirzaee, S Ruy, Gh Ghazavi, C Bogner,
Volume 12, Issue 46 (1-2009)
Abstract

At present, soil surface characteristics (SSC) are recognised as key parameters controlling infiltration rates, runoff generation and erosion. Microtopography of surface among SSC is the main one. The work presented in this paper is based on a set of digital elevation models (DEMs) supplied by two different methods: Laser roughness-meter and photogrammetry method. We used two maquettes. The used maquettes correspond to varying roughness (rough and soft roughness). These methods were compared using different statistical parameters of SSC such as heights and slopes histograms. In addition, we studied estimation of Random Roughness (RR) coefficient and Maximum Depression Storage (MDS). RR is considered as an indicator of microtopography and it is one of the main parameters influencing erosion and runoff-infiltration processes. The obtained RR by photogrammetry method showed, on average, 10 percent difference from laser method for soft maquette and 5 percent for the rough maquette. The range of this difference for the MDS varies from 2 to 34 percent, i.e., maximum 0.17 millimetres. In this study, photogrammetric method gives the DEMs with a lower slope for the rough maquette (on average 40.5 versus 46 for the laser method) and higher slope for the soft maquette (about 23.5 versus 20.7 for the laser method). The results showed the DEMs provided by photogrammetric method is able to perform accurate estimation for RR and provides good estimation for the MDS. Therefore, it can be useful in erosion and hydraulic studies.
H Owliaie, E Adhami, M Chakerhosseini, M Rajaee, A Kasraian,
Volume 12, Issue 46 (1-2009)
Abstract

Magnetic susceptibility (χ) measurements are widely used for the evaluation of soil profile development. Fourteen soil profiles were studied in a relatively wide range of climatic conditions in Fars Province. Citrate-bicarbonate-dithionite (CBD) extraction and micro CT-Scan images were used to evaluate the source of magnetic susceptibility. The results showed that soil samples lost 23 to 91 percent of their magnetic susceptibility after CBD extraction (χCBD), reflecting differences in the source (pedogenic or lithogenic) of magnetic susceptibility. Greater values of the decrease were noticed mostly in well developed soil profiles as well as in soil surface. 22 to 89% of the decrease was observed in frequency dependence of magnetic susceptibility (χfd) after CBD extraction. A significant positive correlation (P<0.01) was obtained between χCBD and χfd in the soil studied. Micro CT-Scan images with a spatial resolution of 33 µm showed lithogenic magnetic Fe oxide (magnetite) grains.
M Khorshid, As Hosseinpur, Sh Oustan,
Volume 12, Issue 46 (1-2009)
Abstract

Organic manures can affect phosphorus (P) sorption characteristics (PSC) and its availability in soils. Information about effect of sewage sludge (SL) on PSC in calcareous soils of Hamadan province is limited. The objective of this research was to study the effect of SL on PSC and available P in 10 calcareous soils. The soil samples were incubated with and without 1.5 % SL for 5 months at field capacity at 25 ±1 סC . After incubation, available P was determined by Olsen method. Furthermore, 2.5 g samples were shaken with 25 mL 0.01 M CaCl2 containing 0 to 30 mg P L-1 as KH2PO4. After equilibration, suspensions were centrifuged and P concentration was determined in clear extracts. The results showed that SL application increased available P. The mean available P value increased by 37.6 %. Available P in untreated and SL-treated soils ranged from 8.1 to 22.1 and 14.8 to 28.0 mg kg-1, respectively. Sorption data in the all samples were well described by Freundlich and linear isotherm, whereas sorption data in all SL-treated soils did not adequately fit to the Langmuir isotherm. The constants of sorption isotherms were lowered by SL application. The mean sorption maxima, binding energy and maximum buffering capacity values decreased by 38.85, 21.34 and 38.90 % respectively. The mean distribution coefficient, Freundlich n and the mean buffering capacity (slope of linear model) values decreased by 21.7, 16.0 and 6.1 %, respectively. The results of this study showed that application of SL decreases standard phosphorus requirement. Moreover PSC results indicated that use of sewage sludge might increase the risk of P transfer to surface water.
N Barahimi, M Afyuni, M Karami, Y Rezaee Nejad,
Volume 12, Issue 46 (1-2009)
Abstract

Compost and sewage sludge contain high concentration of plant nutrients and, thus, have been used extensively as an inexpensive fertilizer. The objective of this study was to evaluate cumulative and residual effects of compost, sewage sludge and cow manure on nitrogen, phosphorus and potassium in soil and wheat. The experiment included compost, sewage sludge and cow manure, each applied at 3 rates (25, 50 and 100 Mg ha-1), a chemical fertilizer (250 kg ha-1 amonium phosphate + urea) and a control plot with 3 replications. The experimental design consisted in completely randomized blocks with treatments arranged in split plots. To study the cumulative and residual effects of the organic amendments, application was repeated on four fifths of each plot in the second year. Wheat was grown in the plots. The results showed that one application (residual effect) of organic amendments had not significant effect on total N in soil and wheat leaves and stem, but it led to significant increase of available phosphorus and potassium in soil and wheat leaves and stem. Cumulative effects of organic amendments significantly (P≤ 0.05) increased the total N (in 50 and 100 Mg ha-1 Cow manure and 100 Mg ha-1 Compost treatments), available P in all organic treatments and K (in all Compost and Cow manure treatments) in soil. Also, cumulative effects of organic amendments significantly (P≤ 0.05) increased the N (in 100 Mg ha-1 sewage sludge), P (in 100 Mg ha-1 compost) and K (in all organic treatments with the exception of 25 Mg ha-1 Compost) concentrations in leaves and stem.
M Modaray Mashhood, J Asghari, A Hatamzadeh, M Mohamad Sharifi,
Volume 12, Issue 46 (1-2009)
Abstract

To compare the allelopathic potential of some Guilan province rice cultivars with allelopathically approved IRRI rice cultivars, a factorial experiment was conducted in completely randomized block design with 3 replications on the Experimental Farm of Agricultural College of Guilan University in spring 2005. Two factors including a) seven rice cultivars (traditional cultivars of Hashemi, Ali Kazemi, and Tarom and 2 modern cultivars of Khazar, and Dorfak and two IRRI cultivars of Dollar and IR64), and b) two types of planting, (including monoculture and mixed culture of each cultivar with Barnyardgrass) were used. A monoculture of Barnyardgrass was also used as a control. Growth rate (GR) and leaf area index (LAI) of Barnyardgrass were determined after 2, 4, 6, and 8 weeks of transplantation (WT), in mixed and monoculture treatments. In addition, after 3, 6, and 9 WTs the type and number of weeds in 1 m2 of each plot was determined. Rice plant samples were taken in 2, 4, 6, and 8 WTs, and were extracted in the Lab to be tested for germination for barnyardgrass and redroot pigweed seeds in Petri dishes. The filed research results showed that GR, LAI, number of weeds and yield of barnyardgrass grown with Dollar cultivar were lower than the others, which indicates higher allelopathic properties of this cultivar. Rice cultivars water extract evaluation of Petri dish also showed that Dollar cultivar has higher allelopathic potential than the other cultivars. Increasing the concentration of the water extracts increased the suppression of treated seedlings. From starting to geramination stage of the rice cultivars, allelopathic effects of the water extracts decreased. Leaves had the highest level of allelopathic potential in comparison to other organs. In other words, the pure extract of Dollar cultivar taken form samples in 2 and 6 WTs had the highest allelopathy potential among the cultivars and samples.
Z Amini, R Hadad, F Moradi,
Volume 12, Issue 46 (1-2009)
Abstract

The effects of irrigation, dry farming and drought treatments on the activities of antioxidant enzymes including superoxide dismutase, ascorbate peroxidase, catalase and peroxidase in barley leaves at different generative growth stages under field conditions were investigated. Three senescence parameters including chlorophyll, total soluble protein and rubisco large subunit protein loss, were also studied in order to compare our results to those reported by other researchers. The results showed that leaf relative water content (RWC), chlorophyll and total soluble protein and rubisco large subunit protein content declined with leaf age and the effect of water deficit. The activity of superoxide dismutase declined with the progress of the leaf age on all treatments but ascorbate peroxidase activity declined with leaf age only in irrigated (control) plants. There were no significant differences among developmental stages in catalase activity in control plants, while catalase activity declined in the water dry farming and drought stress conditions. Peroxidase activity increased with the progress of senescence for all of treatments in such conditions. Water deficit stress triggered increases in antioxidant enzymes activities. Results showed that among all studied enzymes, peroxidase has a key role in increasing resistance to oxidative stress on both the senescence stages and drought stress condition in Hordeum vulgare.
B Salari, M Shamsedin Said, A Askarian Sardari,
Volume 12, Issue 46 (1-2009)
Abstract

In order to study the effect of NaCl priming on some agronomical and physiological traits of corn (single cross 704), an experiment was conducted at Agricultural Research Station of Bahonar University of Kerman in 2005. The experimental design was completely randomized designs with 3 replications. Treatments were a combination of all different levels of two factors including salinity levels (1, 4, 8, 12, 16 dS/m) and salinity solution for NaCl priming (1, 4, 8, 12, 16 dS/m). Results showed that salinity and NaCl priming had significant effects on total emergence, mean time to emergence, root and stem length, number of leaf, relative water content, ion leakage and K+/Na+. Mean comparison showed that increasing salinity decreased all plant characteristics (with the exception of mean time to emergence and ion leakage) by %49.5, %33.49, %23.97, %18.64, %14.05 and %40.20, respectively. However, increasing salinity led to 1.2 and 1.3 increase in mean time to emergence and ion leakage of leaves, respectively. Mean comparison also showed that NaCl priming decreased negative effects of salt stress, and all mentioned traits under NaCl priming increased as compared with control. The results showed that NaCl priming is a useful method for increasing salt tolerance in corn plant.
Z Daneshvar Ran, M Esfahani, M Payman, M Rabiei, H Samie Zadeh,
Volume 12, Issue 46 (1-2009)
Abstract

The effects of tillage methods and residual management on yield and yield components of rapeseed (Brassica napus L. CV. Hyola308) were evaluated after rice harvest. The experiment was carried out during 2004-2005 cropping season in a factorical arrangement of treatments at Rice Research Institute of Iran (RRII) in Rasht, in a Complete Randomized Block Design with three replications. Treatments included tillage in three methods: a) conventional tillage b) minimum tillage, and c) no tillage, and rice residue management in two manners: a) removing residues, and b) not removing residues. Plant traits such as grain yield, oil percentage and yield, plant density, plant height, the lowest pody branch height from soil surface, number of pods per plant, plant and weed dry weight, leaf area index (LAI) and crop growth rate (CGR) were measured. Results indicated that grain yield was affected by the tillage type. Also, the effect of tillage type on plant height, number of pods per plant, the lowest pody branch height from soil surface, and oil yield was significant. The effect of residual management and residual management interaction and tillage were significant on none of the traits except for weed dry weight. Economic analysis indicated that rapeseed planting in a field with rice residual and minimum tillage had a relative advantage of less production cost in spite of nearly 15 percent yield decrease compared to other methods.
M Lotfalian, B Majnonian, M Rezvanfar, A Parsakho,
Volume 12, Issue 46 (1-2009)
Abstract

In this research, the logging and wood extraction damages caused by wood and paper companies was investigated. The average volume per hectare of compartments 17 and 28 of Waston watershed and Compartment 7 of Alandan watershed was more than 150 cubic meters. So, these compartments were selected as the suitable research sites. The systematic randomized sampling method with 1000 m2 circular plots was used to assess the damages to residual stands and 100 m2 circular plots was used to assess the damages to regeneration. Sampling in skid trail was done with one hundred percent inventory method with a width of 12 meter. Results of this study indicated that 3.2 percent of regeneration was damaged in felling and bucking operations and 4.8 percent of regeneration was also damaged after winching and skidding operations. Most of these damages occurred for thicket stage. The felling and bucking operations damaged 13.6 percent of the residual stand. The amount of damage to the stand after skidding including the whole logging damages equals 15.5 percent. Unnecessary damages to stand and regeneration could have been avoided by selecting the best harvesting method, skidding practices, adequate incentives/disincentives and appropriate supervision.
H Baghaee, F Shahidi, M.j Vriadi, M Nasiri Mahalati,
Volume 13, Issue 47 (4-2009)
Abstract

Cantaloupe (Cucumis melo L.) is one of the most important melons in Iran especially in Khorasan province. The cantaloupe seed is a good functional and nutritional source for human, having large amounts of essential amino acids and unsaturated fatty acids. In spite of nutritional and functional aspects, it does not have considerable applications in food industry yet. Cantaloupe seed milk's pH is about 6.8, so cannot be stored for a long time. In this work, pH of cantaloupe seed milk decreases to 4.15 in 3 treatments (citric acid, orange concentrate, and orange sacs) and a constant amount of lemon juice. At first, nutritive value of seed milk was measured. According to results, this milk is a good source of protein (1.52%), phosphorus (41/3 ppm) and potassium (17 ppm). After that, storage stability of cantaloupe seed beverage at refrigerator temperature (4 °C) for 42 days was evaluated by analyzing changes in the chemical, microbial and sensory properties. The results showed that the orange concentrate-cantaloupe seed beverage reached the highest score of total acceptance (3.67 on a 5-point hedonic scale). In these conditions, we couldn’t find any molds and yeasts in the samples, thus the shelf life of the mentioned beverage could be 6 weeks at 4 °C.
A Akbari, M Shahedi, N Hmadami, Sh Dokhani, M Sadeghi,
Volume 13, Issue 47 (4-2009)
Abstract

Sun drying is a well-known food preservation technique that reduces the moisture contents of agricultural products. Shrinkage, rehydration ability and color of food materials during air drying adversely affect the quality of the dried products. Since all fresh tomatoes can not be consumed at the time of harvest, preservation provides a larger market, allowing consumers to buy the preserved tomato through the year. A natural convection solar dryer consisting of a solar air heater and a drying chamber was manufactured in this research. Tomato slices were dried in the solar dryer and compared with open sun drying. Also, tomato slices were dried in a laboratory oven (operated at temperature 50, 60, 70, 80°C). With increasing the temperature, the time required to arrive certain moisture content is decreased. Also results showed that drying time in the solar dryer is shorter than open sun drying. In other words, drying time was reduced 17 to 45% by the solar drying in comparison to open – sun drying. The experimental shrinkage data showed a linear behavior with moisture content. Also, the experimental data didn't show a strong effect of temperature on the rehydration ability of the product. Thus, the effect of temperature and method of sun drying on the shrinkage phenomenon and the rehydration ability can be neglected. Tomato slices dried at 50°C had better appearance (lightness and red color) than at 80°C.

Page 9 from 21     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb