Search published articles


Showing 1096 results for Ro

Sh. Ghorbani Dashtaki, N. Karimian, F. Raeisi,
Volume 21, Issue 1 (6-2017)
Abstract

The use of organic matter such as urban sewage sludge may help sustainable soil fertility via improving the physical, chemical and biological soil characteristics. The main purpose of this study was to determine the effect of urban sewage sludge on chemical properties, soil basal respiration and microbial biomass carbon in a calcareous soil with silty clay loam texture. Therefore, three levels of water repellency (zero, weak and strong) were artificially created in a silty clay loam soil by adding urban sewage sludge (S0=0:100; S50=50:50 and S80=80:20 sludge weight: soil ratio). Water repellency was determined by water drop penetration time (WDPT) method. Also some chemical properties such as soil acidity (pH) and Electrical Conductivity (EC), Soil Organic Carbon (OC), soluble sodium (Na+) and soluble potassium (K+) were measured. The samples were incubated at 23-25 ºC for 30 days and their moisture was maintained at 70-80 % under field capacity and soil basal respiration and microbial biomass carbon of incubation period were evaluated. The results showed that the effect of urban sewage sludge on chemical properties was significant (P ≤0.0001). The application of urban sewage sludge led to significant increase in basal respiration (16 and 27 times) and microbial biomass carbon (15.2 and 26.5 times) in the water repellency soils (S50 and S80) compared to control soil. The observed positive effect of sewage sludge might be due to a high content of organic carbon and nutrients in urban sewage sludge and decrease in the labile organic matter and nutrients during incubation period.
 
 


S. M. A. Zomorodian, A. Soleymani,
Volume 21, Issue 1 (6-2017)
Abstract

Erosion is one of the main factors of destruction of hydraulic structures. Therefore, soil improvement is necessary to improve soil quality and reduce soil erosion. Due to the adverse effects of substances such as lime and ash and also the increasing usage of nanotechnology in various branches of engineering sciences, using nanoparticles as new additives is an efficient way. In this study, to investigate the effect of nanosilica additive on soil, erosion function apparatus (EFA) is used. Samples containing nanosilica with 0, 1, 1.5, 2 and 4 percent (w/w) of dry soil were compacted in the standard compaction mold. They were tested in a close flume and with variable discharges. Erodibility parameters showed that by addition of 1.5% nanosilica to the dry soil, erodibility decreased by 92% as compared with untreated soil. The optimal amount of nanosilica was chosen as 1.5%. The results showed that samples compacted with the optimum moisture content causes the least erodibility. Scanning Electron Microscope (SEM) tests results showed that by addition of nanosilica to the dry soil, soil structure becomes more dense which reduces the risk of erosion.
 


M. Bater, H. Ahmadi, R. Emadi,
Volume 21, Issue 1 (6-2017)
Abstract

Kahgel is one of the oldest traditional mortars in Iran capabilities and performance of which in the past to conserve earthen buildings show that it can be used as a covering for conservation and preservation of earthen architectural structures. The ancient waterproof covering is very efficient at keeping the building dry during the heavy rain showers, but low durability and the need for renewal the plaster due to erosion of rainfall suggest that Kahgel plaster is weak and unstable. So, it is very essential and necessary to find appropriate scientific methods to enhance durability and lifespan of Kahgel plaster. In this research, the effect of silicates micronized additives (including Microsilica, Feldspar, Zeolite, Bentonite and Kaolin) on the stabilization and improvement of the physical and mechanical properties of Kahgel plaster with experimental study by hydraulic conductivity and water erosion Kahgel plaster indicated that using the micronized silicates additives can significantly improve physical and mechanical properties of earth and earthen materials such as Kahgel. Experimental results showed that application of Kaolin 150 microns at 3 wt% (by weight of Kahgel) reduced hydraulic conductivity of the Kahgel plaster at 65% level and Zeolite 45 microns at 3 wt% (by weight of Kahgel) decreased by 85%. In addition evaluation of water erosion of the samples during rainfall by rainfall simulator showed that use of 3 wt% micronized Microsilica, Feldspar, Zeolite and Kaolin decreased sample’s total dry material loss of the Kahgel plaster at least10/5% and maximum up to 37/7% and increased their durability against erosion from rainfall. In addition, results from studies indicate that by reducing the particle size of the additive, their positive effect on physical and mechanical properties of Kahgel mortar increases. On the other hand, 3 wt% is the optimized percentage of micronized silicate additives to improve Kahgel coating and increased amount of additives seems to have no significant impact on the improvement of physical and mechanical properties.
 

H. Saghi,
Volume 21, Issue 1 (6-2017)
Abstract

The water supply networks have always been of significance to researchers as a hydraulic system of transferring and distributing water. The pressure gradient is the main reason of water transfer in networks, and in case of non-standard pressure increase, the undesirable phenomenon of leakage occurs in the network. Leakage in urban water distribution networks causes water waste and enormous financial losses. Therefore, there exists the need to manage and minimize the amount of leakage. In this study, a water distribution network is modeled using the potentialities of hydraulic analysis model, the EPANET 2.0, and, by presenting a new model, the leakage location is recognized. In order to do this, we, firstly, entered all the network parameters into the software. Then, the network was analyzed supposing the non-occurrence of leakage and the amounts of nodal pressures were measured. Moreover, the nodal pressures were estimated by creating a hypothetical leakage in one of the network nodes and analyzing the network. Finally, the position of leakage was determined by defining the leakage index and comparing it in various nodes. The results show that the suggested method is efficiently capable of predicting the leakage position in the network so it can safely replace other methods, especially destructive methods used in recognizing the leakage position in the network.

F. Jalilian, B. Behmanesh, M. Mohammad Esmaeili, P. Gholami,
Volume 21, Issue 2 (8-2017)
Abstract

In this study, different indices of vegetation cover variations and different physicochemical properties of soil in three treatments of flood spreading, enclosure and grazing (control) were investigated and compared in in the region of Peshert in Mazandaran province. In order to measure different soil characteristics, 18 soil samples (six withdrawals at any treatment) from a depth of zero to 30 cm were taken from the desired treatments. In order to investigate different vegetation indices, a total of 90 plots (nine transects of 100 m) were run using systematic random sampling in the studied treatments and the necessary measurements were done (30 plots at any treatment). Then, in each of these plots, canopy coverage percentage was determined separately for each species and to evaluate and assess the diversity and richness in all three treatments, Shannon-Wiener and Simpson diversity indices and Menhink and Margalef richness indices were used. Finally, the data obtained from both sections of soil and vegetation in three studied treatments were compared and analyzed using one-way ANOVA and Duncan test. The results showed that floodwater spreading and enclosure significantly increased the percentage of sand and total Nitrogen, and significantly reduced the percentage of silt and potassium compared to control treatment. Also, percentage of clay and organic matter, soil pH levels, conductivity and soil phosphorus showed no significant differences in the treatments under study. The results of variance analysis of various indices of diversity, richness and species evenness showed that all indicators had significant responses in three treatments and the highest diversity and species richness were observed in flood spreading and enclosure treatments. Due to changes in soil properties and vegetation in flood spreading and enclosure treatments compared to the control treatment, it can be stated that operations of floodwater spreading and enclosure in the studied region has had positive effect on modification of soil texture, increasing the permeability of the soil and ultimately improvement of the vegetation.


Engineer H. Talebikhiavi, Engineer M. Zabihi, Dr. R. Mostafazadeh,
Volume 21, Issue 2 (8-2017)
Abstract

Effective soil conservation requires a framework modelling that can evaluate erosion for different land-use scenarios. The USLE model was used to predict the reaction of appropriate land-cover/land-use scenarios in reducing sediment yield at the upland watershed of Yamchi Dam (474 km2), West Ardabil Province, Iran. Beside existing scenario, seven other land-use management scenarios were determined considering pattern of land-use through study area within a GIS-framework. Then, data inputs were prepared using terrain data, land-use map and direct observations. According to the model results, the generated erosion amount was 3.92 t/ha/yr for the current land-use (baseline scenario). For this purpose, conservation practices in dry farming slopes and implementing the scenario 5 (contour farming and remaining crop residuals) can reduce the sediment to 2.02 t/ha/yr. The lowest and highest decreases in sediment yield are projected to be through implementation of scenario 6 (irrigated farming protection with plant residuals) and 7 (biological soil conservation in dry and irrigated farming). The results indicated that, implementing scenario frameworks and evaluating appropriate land-use management scenarios can lead to the reduction of sediment entering the reservoir, and prioritizing soil conservations in the studied area.
 


M. Foroumadi, A. R. Vaezi,
Volume 21, Issue 2 (8-2017)
Abstract

Rill erosion is the first step in soil erosion process in the hillslopes, particularly in arid and semiarid regions. This study was conducted to investigate the role of rainfall intensity and raindrop impact on the physical properties of soils and particle detachment capacity (Dc) in a marl soil. Marl soil samples were filled into the flumes with 4 m long and 0.9 m wide and exposed to simulated rainfalls with different intensity varying from 10 mm h-1 to 100 mm h-1. Particle Size Distribution (PSD), aggregate size, porosity, crust thickness, and Dc were determined in each rainfall simulation. The results found that the physical soil properties i.e. PSD, aggregate size, porosity and crust thickness (P< 0.000) were significantly influenced by different rainfall intensities. Also, the rainfall intensity was also an important factor in controlling Dc in the soil. Rainfall intensity of 30 mm.h-1 was recognized as the threshold rainfall intensity for transporting soil particles in the marl soil and rill erosion. An increase in the rainfall intensity was attributed to the increases in the raindrop impacts and in consequence aggregate breakdown, and higher production of concentrated flows in the rills. Raindrop impact is the most important characteristics of the rainfall in the rill erosion and Dc in the marl soil.

M. Rezashateri, S. J. Khajeddin, S. H. Matinkhah, M. M. Majidi,
Volume 21, Issue 2 (8-2017)
Abstract

This research investigated the effects of super absorbentpolymers on root characteristics of Avena fatua under two soil textures and three irrigation regimes. The study was arranged according to a factorial experiment based on a completely randomized design with three replications. Hydrogel compositions included three types of super absorbents (Aquasorb, Boloorab A and Stockosorb) with two levels of 5 and 10 g/kg of soil, plus a control level. The studied traits were shoot height, shoot dry weight, root dry weight, ratio of root/shoot, root length, root perimeter and root volume of Avena fatua. ANOVA showed that the effect of soil texture was significant (p<0.01) for all studied traits. Mean comparison stated that 10g/kg of Aquasorb with 100% irrigation in sandy loam texture and 5g/kg of Stockosorb with 100% irrigation in loamy texture had the most significant and best results, compared with the control treatments. The results revealed that production of dense root network and root aggregation stimulated by super absorbent polymers, increased root contacts with moisture and led to significant increment in root traits like length, perimeter and volume by preparing water. In addition, selecting the type and concentration of super absorbent polymers depends on soil texture, considering the difference between the best results in two soil textures.
 


S. Vaseghi, M. Valinejad, M. Afyuni,
Volume 21, Issue 3 (11-2017)
Abstract

Nitrogen use efficiency is relatively low in irrigated rice fields because of rapid N losses from ammonia volatilization, the nitrification, surface runoff, and leaching in the soil-flood water system. Since the plant N represents the total N supply of all sources, plant N status will be a good indicator of N availability to crops at any given time. Leaf colour chart (LCC) is a simple portable diagnostic tool, to determine the timing of N top dressing. LCC was developed to increase the N use efficiency at irrigated rice fields. A field experiment was carried out to compare the effect of N split application and LCC on the grain yield and agronomic and recovery efficiency of Fajr variety in 2009. The experiment was conducted in a randomized complete block design with 12 treatments in 3 replications on Fajr cultivar. Twelve treatments included control treatments (without nitrogen fertilizer) and 45, 90, 135 kg N ha-1 for three times each and two treatments included LCC treatments 4 and 5. As a result, all treatments showed significant (p=0.05) grain yield increase in comparison to control. Increased yield was observed up to 135 kgN/ha (55.2%). Grain yield of LCC treatments was higher than split treatments. LCC treatment 5 had higher AE, RE, PE, PFP and IE than LCC 4 and fixed – 135 at the less N rate in all fields. Therefore, the results of different fertilizer treatments showed that the LCC treatment 5 with maximum grain yield, agronomic, physiological, internal and relative efficiency factors can be considered as the best management method for using nitrogen fertilizer and preventing from excess use of nitrogen fertilizer in Fajr cultivar. 
 


E. Jasemi Zargani, S. M. Kashefipour,
Volume 21, Issue 3 (11-2017)
Abstract

Spur dikes are the most common hydraulic structures for river bank protection. Since the construction of this structure causes higher velocities around it, this structure is exposed to erosion. Riprap around the structure nose is one of the most common and economic way to protect spur dike. The main aim of this study is to investigate the riprap stability in a mild 90 degrees bend. Experiments were conducted in a laboratory flume with a 90 degree bend. After specifying the critical spur dike along the bend, this spur and one before and one after it were protected by riprap. The variables were the length of the structure, spur space, riprap size, Froude number, and the amount of submergence, and 205 experiments were carried out in this flume. Finally an experimental equation was developed based on the flow and geometric parameters of submerged spur dike, which can be applied for designing the riprap size. 


A. Reyhanitabar, K. Khalkal, N. Pashapour,
Volume 21, Issue 3 (11-2017)
Abstract

In this research available iron was measured in 21 calcareous surface soil samples (0-30 cm) by five methods including DTPA, AB-DTPA, AC-EDTA, hydroxylamine, reference ammonium oxalate and rapid ammonium oxalate. Fe fractions were also determined by the modified sequential extraction procedures introduced by Singh et al. According to results, rapid ammonium oxalate and AC-EDTA methods extracted the maximum (856.03 mg.kg-1) and minimum (4.46 mg.kg-1) amounts of Fe, respectively. Rapid ammonium oxalate extraction method, in addition to Fe-Afeox, extracted other fractions of iron such as Fe-Ex, Fe-Om, Fe-CFeox and Fe-Res. Hydroxylamine method compared to other methods, ectracted Fe mostly from the amorphous oxides source. Regression analysis indicates that Fe-Ex, Fe-AFeox and Fe-Res fractions have major and Fe-Car and Fe-Mnox have minor role in releasing available Fe (with AB-DTPA and DTPA) in the studied soil. According to the statistical relationships, carbonates associated Fe, does not seem a potential source of available Fe in calcareous soils. Organic carbon content and cation exchange capacity of the soils appear the two most influential soil properties that predict available Fe in the studied soils.
 


S. Ashrafi-Saeidlou, Mh. Rasouli-Sadghiani, M. Barin,
Volume 21, Issue 3 (11-2017)
Abstract

The Firing effect on soil depends on its intensity and duration. In order to investigate influence of different firing backgrounds on some soil physical and chemical properties, 80 soil samples were taken from two depths (0-5 cm and 5-20 cm) with different time of firing background (2 and 12 months). Some soil physical and chemical characteristics were measured at soil samples. The results showed that there was a significant difference in the amount of pH, EC, bulk density and ammonium in soils with different history of burning. The amount of studied indices increased after firing in burned soils compared to the control ones. However 12 months later they reach to their pre-fire levels. Total nitrogen amount in soils with 2 and 12 months firing history were 1.18 and 1.11 times higher than the control soils, respectively. The amount of organic carbon in surface depth (0-5 cm) of burned soils with 2 and 12 month firing backgrounds 37.25 and 24.7 percent increased in comparison to control soils, respectively. Also, fire led to a significant reduction in the amount of clay (29.25 percent) in burned areas compared to the control ones. Soil particle size distribution in control sites were in clay up to loam and in burned areas were in clay loam up to sandy loam classes. Therefore forest firing causes obvious changes in soil properties, remediation of which takes more than one year.
 


A. Arabameri, K. Shirani,
Volume 21, Issue 3 (11-2017)
Abstract

Recent urban development and population growth in Shahrood tend to adopt a strategy for ground water management. This project, which is a descriptive- analytic type study based on field observation and laboratory analysis, aims to delineate proper sites for groundwater artificial recharge using integrated AHP-TOPSIS.  First, the study area was delineated using remote sensing techniques. Then, appropriate criteria including 5 main criteria and 12 sub-criteria were obtained by field observation and literature review. Then, the appropriate sites for groundwater recharge were determined. The process of the used method consists of designing hierarchical structure of the project, preparation of pairwise comparison matrices, weighting criteria and sub criteria values by experts, and ultimately ranking them by TOPSIS method. Results showed that lithology, slope, water table depth, and land use have the main role in sites delineation. A number of control sites were employed for model validation that indicates 87.20 percent accuracy. Overally, 73.6 and 82.12 percent of the total area were grouped as very suitable and suitable classes, respectively.
 


F. Heidari, K. Shirani, R. Saboohi,
Volume 21, Issue 3 (11-2017)
Abstract

The Ab-Barik watershed in Bam is a part of Lut desert basin. It is like all other desert areas which has erosion problems caused by wind erosion, sand and soil storms. The result of these sand storms appears as continuous and isolated sand hills. In this paper it was attempted to identify direction and source of harvest points by using sedimentological methods. This was accomplished by step by step sand processed method. At the first step the main direction of harvest areas was determined by some studies such as collecting public information, the study of general morphology and measuring sand hill, comparison of aerial photos in different periods and analysis of region winds. At the second step the origin of sand areas was recognized by investigations such as the study of geomorphological facies of lands of harvest regions with emphasis on morphodynamic wind, granulation of sand hills elements and surface soil of erosionic facies plots at harvest lands, study of morphoscopy of forming particles of samples and determination of indices including central diameter, roundness, sorting and mineralogy of samples. The results revealed that the main source of sands is clay pan facies and farm lands, especially waste lands. Also, the main direction of harvest areas displacement is from south, southwest to north, and northeast. Application of results of this study can modify the used management methods, controlling and confronting with the problem of wind erosion and sand and soil storms.
 

M. Naderi, M. Shayannejad, B. Haghighati, S. Karimi, S. Heydari,
Volume 21, Issue 3 (11-2017)
Abstract

Considering water scarcity in Iran, application of deficit irrigation or water stress on some crops is inevitable. We need to provide appropriate design for deficit irrigation. Furrow irrigation management to obtain high efficiency and uniformity is difficult. Therefore, to investigate the variation of the input discharge, the cut-off time and furrow length that are effective on the efficiency and uniformity are very important. The purpose of this research is to provide a method for determining the optimum water use depth and optimizing furrow irrigation design in deficit irrigation conditions and finally comparing design characteristics under full irrigation conditions and deficit irrigation and comparison in different soil tissues. In order to achieve the objectives of this research, an experiment was conducted on forage corn in Shahrekord in a completely randomized block design with 7 treatments of different levels of irrigation in 3 replications. The costs and benefits functions were determined based on design variable and depth of applied water. The software Lingo was used to optimize the design variables (length of the furrow, the input discharge and cut-off time) and depth of applied water in deficit irrigation condition. The results showed that the highest net profit was obtained using 535 mm (equivalent to 79% of full irrigation) and 85 meters, 0.39 liter per second and 188 minutes, respectively, for the length of furrow, input discharge and cut-off time. The results of this design were compared to full irrigation of deferent soil textures. The results showed that an increase in the permeability of the soil caused length of furrow and the cut-off time to decrease, while the flow rate increases and depth of applied water or percent of deficit irrigation were constant.

S. H. Roshun, Gh. Vahabzadeh, K. Solaimani, A. Khaledi Darvishan,
Volume 21, Issue 3 (11-2017)
Abstract

Sand and gravel mining from the most of our country rivers causes morphological, hydrological and geomorphological changes in these rivers. This study investigates the effects of removal of sand and gravel from the river bed on sedimentological features of Zaremrood River in Mazandaran province. For this purpose, by determining four sections before and four sections after the sand removing point, the river bed sediments sampling in combined approach and in a plot within the river were performed and sedimentology features such as the large, medium and small diameters (a, b and c), roundness (Rc), form factor (Sf), normal diameter (D), sphericity (S), and width ratio (W), were measured and calculated in the laboratory and analyzed by SPSS software. The results showed that the variations of sediment statistics a, b, c, Sf, D, S and W in the pre- and post- harvest location has a significant difference but the Rc statistic does not show any significant difference. The reduction of the triple diameters after the excavation site is caused by the fracture of the sediments in the mining area, so that the sphericity of grains also decreased in the mining area. Roundness of sediment particles after the excavation site is decreasing up to 600 meters reach and then it tends to increase.
 


. A. A. Sabziparvar1, S. Ebrahimzadeh2, M. Khodamoradpour3,
Volume 21, Issue 4 (2-2018)
Abstract

The most important factor in determining crop water requirement is estimation of evapotranspiration (ET). Majority of the methodsestimate ET apply series of relatively complex formula,which is then used to determine crop evapotranspiration (ETc). The parameters used in aforesaid methods are: Solar radiation, wind speed, humidity, etc. Unfortunately, in Iran and many countries, long-term records of these parameters are not readily available. The purpose of this study is to calculate the Selianinov Hydrothermic Index that merely requires daily temperature and precipitation data in order to determine correlation coefficients (r) versus ET and Crop Water Requirement (CWR) of some agricultural crops of Iran. First, the Selianinov index is calculated from daily precipitation and temperature during the growth season. Further, the results are correlated against both ETc and CWR. The model results indicate inverse (negative) strong exponential and polynomial relations between the dependent and independent variables. Coefficient of determination (R2) for polynomial equations (on average 0.84) in all crops was better than exponential equations (on average 0.72). Correlation between Selianinov index and CWR indicates that coefficient of determination in both equations was close together (0.83 for polynomial equations and 0.82 for exponential equations).

M. Sadeghian, H. Karami, S. F. Mousavi,
Volume 21, Issue 4 (2-2018)
Abstract

Nowadays, greater recognition of drought and introducing its monitoring systems, particularly for the short-term periods, and adding predictability to these systems, could lead to presentation of more effective strategies for the management of water resources allocation. In this research, it is tried to present appropriate models to predict drought in city of Semnan, Iran, using time series, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (MLP and RBF). For these modeling processes, average monthly meteorological parameters of rainfall, temperature, minimum temperature, maximum temperature, relative humidity, minimum relative humidity, maximum relative humidity and SPI drought index were used during the period 1966 to 2013. The results showed that among the many developed models, the ANFIS model, with input data of average rainfall, maximum temperature, SPI and its last-month value, 10 rules and Gaussian membership function, showed appropriate performance at each stage of training and testing. The values of RMSE, MAE and R at training stage were 0.777, 0.593 and 0.4, respectively, and at testing stage were 0.837, 0.644 and 0.362, respectively. Then, the input parameters of this model were predicted for the next 12 months using ARIMA model, and SPI values were predicted for the next 12 months. The ANN and time series methods with low difference in error values were ranked next, respectively. The input parameters SPI and temperature had better performance and rainfall parameter had weaker performance.

R. Samiei Fard, H. Matinfar,
Volume 21, Issue 4 (2-2018)
Abstract

Reflectance spectroscopy is a fast and safe method to predict soil physicochemical and biological properties in low cost ways. Traditional methods to determine soil properties require spending a lot of time and money so that farmers are generally reluctant to use the results of laboratory measurements in soil and water management. Reflectance spectroscopy in the spectral range of 400-2500 nm (VNIR) is an alternative method for estimating the soil properties. The aim of this study was to evaluate the results of laboratory spectrometer to estimate the concentration of Lead (Pb) and Nickel (Ni) in soils irrigated with water from treatment of urban sewage sludge of Rey city and finally to compare these results with the results of measurements of atomic absorption spectrometry. In this study, the Partial Linear Square Regression (PLSR) model was used to estimate the concentration of heavy metals and Residual Mean Square Error (RMSE) was used to evaluate the performance of this model. In this research, after spectral corrections related to elimination of the water absorption bands as well as elimination of the inefficient spectrum from heavy metals estimations, the methods of estimating these elements were studied through mathematical derivation of spectral values and also the acquisition of the continuum removal spectra. The results show that the estimated values from first derivate spectra are more consistent with the results of atomic absorption spectrometers.

R. Amirnia, J. Jalilian, E. Gholinezhad, S. Abaszadeh,
Volume 21, Issue 4 (2-2018)
Abstract

To evaluate the effect of supplemental irrigation and seed priming on yield and some quantity and quality characteristics of vetch (Vicia dasycarpa) rainfed maragheh cultivar, an experiment was carried out at the Research Farm of Faculty of Agriculture, University of Urmia, West Azarbaijan province, Iran, during 2011. The experiment was laid out using split-plot, based on Randomized Complete Block design in three replicates. The factors studied were: Supplemental irrigation at four levels: without supplemental irrigation (I1), 1 time of supplemental irrigation (I2), 2 times of supplemental irrigation (I3) and 3 times of supplemental irrigation (I3). The subplot included four levels of seed priming: Control (C), Water (W), Phosphate (P) and Nitroxin (N). Plant height, pod number in stems, 1000-grain weight, wet and dry forage yield in the second and third harvest and fiber percentage in the second and third harvest, protein yield in the second and third harvest, biological yield and harvest index were influenced by the supplemental irrigation. Wet and dry forage yield in the second harvest and wet forage yield in the third harvest were highest in I4 with respectively 14.5, 16.72 and 3.56 (tons/hectare) yield and lowest with respectively 7.73, 7.47 and 2.06 (tons/hectare) yield. As a result, applying 2 times of supplemental irrigation and seed treatment with phosphate and nitroxin had positive effects on quality and quantity yield of vetch and they could improve the quantity and quality of Vetch forage.
 



Page 41 from 55     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb