Search published articles


Showing 1096 results for Ro

M. H. Rasouli-Sadaghiani, R. Ebrahimi Karimabad, R. Vahedi,
Volume 24, Issue 3 (11-2020)
Abstract

In order to investigate P acquisition efficiency (PACE) and P utilization efficiency (PUTE) of the corn in the presence of phosphate-solubilizing microorganisms (PSMs), a factorial experiment was carried out in a completely randomized design in the greenhouse. The factors were including P sources (tricalcium phosphate (TCP) and rock phosphate (RP)) and microbial inoculation (control, soluble P as KH2PO4 (Ps), inoculation with bacteria (PSB), inoculation with fungi (PSF), co-inoculation of PSB + PSF). At the end of growth period, plant dry weight and P content in plant and soil available-P were measured and then PACE, PUTE and phosphorus efficiency (PE) indices were calculated. The results showed that, the interaction of phosphate source and microbial inoculation was significant with respect to shoot P content, soil P, PUTE and PE. PSF-TCP treatment increased 7 times shoot phosphorus content compared to cont-RP treatment.  PUTE in Cont-TCP treatment was 2.35 times higher than the TCP-PS. The inoculation of PSF increased the PACE 1.61 times compared to co-inoculation of PSB + PSF tretment. Also, the highest PE index (99%) was obtained from SF-TCP treatment. In general, in calcareous soils with low P availability, inoculation of PSM with insoluble phosphorus sources can meet the phosphate needs of the plant.

M. M. Fallahi, B. Yaghoubi, F. Yosevfand, S. Shabanlou,
Volume 24, Issue 3 (11-2020)
Abstract

Rainfall may be considered as the most important source of drinking water and watering land in different areas all over the world. Therefore, simulation and estimation of the hydrological phenomenon is of paramount importance. In this study, for the first time, the long-term rainfall in Rasht city was simulated using an optimum hybrid artificial intelligence (AI) model over a 62 year period from 1956 to 2017. The gene expression programming (GEP) and wavelet transform (WT) were combined to develop the hybrid AI model (WGEP). Firstly, the most effective lags of time series data were identified by means of the autocorrelation function (ACF); then eight various GEP and WGEP models were defined. Next, the GEP models were analyzed and the superior GEP model as well as the most influenced lags was detected. For instance, the variance accounting for (VAF), correlation coefficient (R) and scatter index (SI) for the superior GEP model was calculated to be 0.765, 0.508 and 0.709, respectively. Additionally, lags (t-1), (t-2), (t-3) and (t-12) were the most influenced. Then, the different mother wavelets were examined, indicating that the demy mother wavelet was the most optimal one. Moreover, analyzing the numerical simulations showed that the mother wavelet enhanced the performance of the GEP model significantly. For example, the VAF index for the superior WGEP model was increased almost three times after using the mother wavelet. Furthermore, the R and MARE statistical indices for the WGEP model were computed to be 0.935 and 0.862, respectively.

S. Zandifar, Z. Ebrahimikhusfi, M. Khosroshahi, M. Naeimi,
Volume 24, Issue 3 (11-2020)
Abstract

The occurrence of wind erosion and the spread of dust particles can be regarded as one of the most important and threatening environmental factors. Climate change and the frequency of droughts have played an important role in exacerbating or weakening these events. The primary objective of the present study was to investigate the trend of changes in four important climatic elements (precipitation, temperature, wind speed and relative humidity) and dust storm index (DSI) in Qazvin city using the Mann-Kendall pre-whitened test and to determine the relationship between them based on the multiple linear regression method. Assessment of the meteorological drought status based on two standardized precipitation index and standardized precipitation, as well as the evapotranspiration index and analysis of their effect on activity level of dust events, was the other objective of this study in the study area. For this purpose, after preparing and processing the climatic data and calculating the dust storm index, the trend of changes and the relationship between climatic parameters and dust events were investigated. The results showed that the changes of trend in the annual precipitation and relative humidity in Qazvin city were increasing, while the trend of annual changes in the wind speed and the mean air temperature was a decreasing one. Investigation of the monthly changes in the dust events also showed that there was a sharp decrease in the occurrence of wind erosion and the spread of domestic dust particles only in July. On a seasonal scale, with the exception of winter that has been reported without trends, in other seasons, the intensity of these events was significantly reduced. The effect of the meteorological drought on wind erosion was estimated to be 11% at the confidence level of 99%. In general, these findings indicate a decreasing trend of land degradation and desertification caused by wind erosion in Qazvin.

N. Shahabinejad, M. Mahmoodabadi, A. Jalalian, E. Chavoshi,
Volume 24, Issue 3 (11-2020)
Abstract

Wind erosion is known as one of the most important land degradation aspects, particularly in arid and semi-arid regions. Soil properties, by affecting soil erodibility, can control the wind erosion rate. The aim of this study was to attribute the soil physical and chemical properties to the wind erosion rate for the purpose of determining the most important property. To this aim, wind erosion rates were measured in-situ at 60 points of Kerman province using a portable wind tunnel facility. The results indicated that wind erosion rates varied from 0.03 g m-2 min-1 to 3.41 g m-2 min-1. Threshold wind velocity decreased wind erosion rate following a power function (R2=0.81, P<0.001). Clay and silt particles, shear strength, mean weight diameter (MWD), surface gravel, dry stable aggregates (DSA<0.25mm), soil organic carbon (SOC), calcium carbonate equivalent (CCE) and the concentrations of the soluble Ca2+, K+ and Mg2+ were inversely proportional to the wind erosion rates following nonlinear functions. On the other hand, Wind erosion was significantly enhanced with increasing the sand fraction, soluble Na+, electrical conductivity (EC) and sodium adsorption ratio (SAR). According to the final results, among the studied soil properties, SAR and MWD were s the most effective properties controlling wind erosion in the soils of Kerman province. Therefore, it is recommended to consider suitable conservation practices in order to prevent the sodification and degradation of arid soils.

P. Heidari, S. Hojati, N. Enayatzamir, A. Rayatpisheh,
Volume 24, Issue 3 (11-2020)
Abstract

The objective of this study was to investigate the impact of land use change (forest and rangelands to agriculture) on some micromorphological indices of soil quality in part of Rakat watershed, southwest of Iran. Accordingly, intact soil samples from 0-15 and 15-30 cm depths were collected from the above-mentioned land uses, and microstructure, type and abundance of voids, redoximorphic features, and humic substances were compared. The results showed that in the natural forest use, most of the voids are in the form of macropores, whereas after their conversion to agriculture, these types of voids have little development. In natural rangelands uses, voids were mainly oriented channels and of macropore type, but after switching from pasture to agriculture, they were mainly of vughy type. The results showed that natural forests (27.73%) and natural grasslands (22.28%) had more abundance of voids than forest to agriculture (19.01%) and grassland to agriculture (18.62%) land uses. In both natural forests and pasture land uses, various types of iron and manganese nodules, coatings, hypo-coatings, and quasi-coatings were significantly higher than agricultural land uses.

H. Alizadeh, A. Hoseini, M. Soltani,
Volume 24, Issue 3 (11-2020)
Abstract

The construction of irrigation network and the water transfer from Karkheh Dam to Dashte-Abbas, due to neglecting the groundwater resources has increased groundwater level and waterlogging of the agricultural land in the recent years. The aim of this study was, therefore, to optimize the conjunctive use of surface and groundwater resources in Dashte-Abbas to minimize waterlogging problems and achieve the maximum net income. For this purpose, the behavior of groundwater was simulated using the system dynamics (SD) approach. The conjunctive use of surface and groundwater resources was then optimized using the Vensim multi-criteria optimization method with the objective function of maximizing the net income of the plain. The SD model calibration was done using climatic, hydrological, agricultural, and environmental data from the 2001-2009 time period; then it was validated based on the information from the 2009-2016 period. Evaluation of the developed SD model showed that the model had high accuracy in simulating key variables such as groundwater levels (ME=60cm, R2=97%, RMSE=47cm) and groundwater salinity (RMSE=100μS/cm, R2=74%, and ME=123μS/cm). Furthermore, the results of the optimization model showed that the optimum use of surface and groundwater resources for the agricultural demand was 65% and 35%, respectively. To sum up, it could be concluded that with the optimization of the conjunctive use of surface and groundwater resource, s about 10 MCM of water consumption could be annually saved to irrigate almost 800 ha of the new lands.

P. Mohit Esfahani, S. Soltani, R. Modarres, S. Pourmanafi,
Volume 24, Issue 3 (11-2020)
Abstract

Drought, as one of the most complicated natural events, causes many direct and indirect damages each year. Hence, single variable identification and monitoring of drought may not be appropriate enough for decision-making and management. In this study, in order to monitor the meteorological-agricultural drought in Chaharmahal and Bakhtiari province, Multivariate Standardized Drought Index (MSDI) was calculated using precipitation and soil moisture variables. In addition, to evaluate the performance of MSDI in drought identification and monitoring, Standardized Precipitation Index (SPI) and Standardized Soil Moisture Index (SSI) were used for meteorological and agricultural drought monitoring, respectively. MSDI was calculated based on the soil moisture and precipitation joint probabilities. We used the Gringorten probability as an empirical method and Archimedean copulas as the parametric method to calculate the joint probability between soil moisture and precipitation time series. The results indicated that MSDI was twice more capable of detecting drought as SSI and SPI. Furthermore, the MSDI-based drought monitoring results showed Charmahal and Bakhtiari province had experienced severe meteorological-agricultural drought in 2000, 2008, 2011 and 2014.

Z. Noori, M. A. Delavar, Y. Safari,
Volume 24, Issue 4 (2-2021)
Abstract

The present study was intended to improve the chemical properties of a saline-sodic soil using the individual application of alfalfa residue and two biochars produced from sugarcane bagasse and walnut shell, at the weighting ratio of 5%; their concomitant application with gypsum, aluminum sulfate and the mixture of these two chemical amendments was considered. The experiment was conducted in three replications using the factorial experiment in a completely randomized design. After four months of incubation, the soil samples were measured for their main chemical properties. The results showed that alfalfa residues were the most effective treatment to reduce the soil pH; so the concomitant application of this organic amendment with gypsum lowered the soil pH from 9.13 in the control (untreated soil) to 7.24. It was also observed that the addition of gypsum and/or aluminum sulfate to the soil led to the increase of the soil electrolyte concentration and consequently, the increase of soil electrical conductivity to three times greater than control, through an increase of ions, like calcium and sulfate in the soil solution. Increasing the soluble sodium concentration by replacing exchangeable sodium by other similar ions showed that the studied treatments enhanced the sodium adsorption ratio (SAR), which could be regulated by washing. Concomitant application of the walnut-shell biochar with gypsum had the most increasing effect on the soil SAR, enhancing it from 22.6 in the control to 54.3. Potassium was released from organic amendments, improving the soil general conditions; addition of chemical amendments elevated soil exchangeable potassium contents; however, the elevated soil available phosphorus contents were less influenced by chemical amendments application. As the conclusion, it seems that the positive impacts of the applied chemical and organic amendments would supplement each other; as a result, the concurrent use of both treatments not only improves the bad soil chemical properties, but also enhances the soil fertility.

F. Afzalinejad, S. Ghasemi, S. E. Seyfati, Sh. Shahbazi,
Volume 24, Issue 4 (2-2021)
Abstract

Today, the use of organic wastes as fertilizers to improve the physical, chemical and biological properties of soil is common. In this study, to investigate the effect of the sewage sludge on the growth and concentration of chlorophyll, nitrogen, phosphorus and potassium in quinoa plant, a factorial experiment was conducted based on a completely randomized design with three replications in a calcareous soil with electrical conductivity of 13.1 dS m-1. Treatments included three genotypes of quinoa (Red carina, Titicaca, Q29) and three levels of sewage sludge (0, 20 and 40 t ha-1). The results showed that the effects of the quinoa genotype, different levels of sewage sludge and the interaction of treatments on the root dry weight, shoot P concentration and chlorophyll concentration were significant. Also, the sewage sludge had a significant effect on the shoot length, shoot dry weight and shoot nitrogen concentration. By increasing the level of the sewage sludge, root length, shoot length, shoot dry weight and shoot N concentration were increased, on average, by 44.7 %, 48.8%, 42.0% and 46.6%, respectively. Also, application of 40 t ha-1 sewage sludge significantly increased the chlorophyll concentration and shoot P concentration in Q29 and Titicaca genotypes. According to the results of this study, application of sewage sludge can increase the growth of quinoa by improving its nutrition.

E. Moradi, D. Namdar Khojasteh,
Volume 24, Issue 4 (2-2021)
Abstract

Wind erosion is one of the environmental problems worldwide, particularly in arid and semi-arid areas of Iran. Different methods and models have been proposed to measure and monitor wind erosion in the recent years. One of the accurate models for measuring f wind erosion is the USEPA model. The purpose of this study was to evaluate the quantification of wind erosion with the USEPA model and the comparison of different interpolation methods for drowsing high-precision soil erosion mapping. For this purpose, 50 samples from 0-30 depth were taken from the study area. Based on the analysis of the physical properties of the soil, including the distribution of the primary and secondary particle sizes, climatic parameters such as evaporation and transpiration, rainfall, wind speed and also, the vegetation and topography characteristics of the area, the erosion rates of Q, Q30 and Q50 were measured. Interpolation methods including general kriging, IDW, LPI and RBF were compared. The results showed that the highest erosion emission rate of Q50 was 39 ton ha-1. The highest and lowest erosion rates for the Q30 index were 0.060 and 2.694 ton ha-1, respectively; for the Q index, the highest and lowest erosion rates were 0.009 and 0.055 ton ha-1, respectively. The results also showed that the IDW method for the Q50 index with the minimum error rate (RMSE) values of 3.94 and the mean absolute error (MAE) with the valueof 1.89 had the best performance among the studied models. The LPI model Q had the best performance with the lowest error (0.0086) and absolute absolute error (0.0021).

H. R. Matinfar, Z. Mghsodi, S. R. Mossavi, M. Jalali,
Volume 24, Issue 4 (2-2021)
Abstract

Knowledge about the spatial distribution of soil organic carbon (SOC) is one of the practical tools in determining sustainable land management strategies. During the last two decades, the utilization of data mining approaches in spatial modeling of SOC using machine learning algorithms have been widely taken into consideration. The essential step in applying these methods is to determine the environmental predictors of SOC optimally. This research was carried out for modeling and digital mapping of surface SOC aided by soil properties ie., silt, clay, sand, calcium carbonate equivalent percentage, mean weight diameter (MWD) of aggregate, and pH by machine learning methods. In order to evaluate the accuracy of random forest (RF), cubist, partial least squares regression, multivariate linear regression, and ordinary kriging models for predicting surface SOC in 141 selected samples from 0-30 cm in 680 hectares of agricultural land in Khorramabad plain. The sensitivity analysis showed that silt (%), calcium carbonate equivalent, and MWD are the most important driving factors on spatial variability of SOC, respectively. Also, the comparison of different SOC prediction models, demonstrated that the RF model with a coefficient of determination (R2) and root mean square error (RMSE) of 0.75 and 0.25%, respectively, had the best performance rather than other models in the study area. Generally, nonlinear models rather than linear ones showed higher accuracy in modeling the spatial variability of SOC.

R. Daneshfaraz, M. Sattariyan Karajabad, B. Alinejad, M. Majedi Asl,
Volume 24, Issue 4 (2-2021)
Abstract

The scour around the bridge piers is one of the main causes of bridge failure and the extraction of aggregates may aggravate this phenomenon. The present study comprehensively investigated the scour around the groups of bridge piers in the presence of aggregate extraction pits, using different discharges. The bridge piers roughened by gravel had been compared with the simple bridge piers; so, the results showed that the roughening caused the reduction of the scour depth. Scour depth change rate led to an increase in the equilibrium time. The results also showed that the reduction of the scour depth at the downstream groups of piers was more than that in the upstream. For the lowest discharge, the aggregate extraction pits had a considerable effect on the scour depth difference for the groups of piers in the downstream and upstream. On the other hand, the effects were decreased when the rate of discharge was increased. The experimental results obtained by the rough surface models showed that as the discharge was increased, the local scour was increased too; at the same time, the bed profile was posed at the low level. Generally, the scour depth of the groups of piers in the downstream of the extraction pit was more than that in the upstream. The results of the current research, therefore, demonstrated that the surface of the bridge pier roughened by gravel reduced the scour depth.

S. Okhravi, S. Gohari,
Volume 24, Issue 4 (2-2021)
Abstract

In regard to wide piers, the pile group rather than single pile is used frequently to bear the loading of the structure in a particular arrangement; piles group composed of only one column of piles in the flow direction has a great effect on supporting the bridge deck. In this study, local scour at a single column arrangement of the piles group made up of four rows of piles characterized by different piles spacing was studied for clear-water conditions with two flow discharges of 20 and 35 l/s (the effect of increasing the flow depth with the same flow intensity). The results indicated that an increase in the flow depth not only greatly enhanced the scour depth and the width of the scour hole. Besides, the investigation of the relative flow depth on scour extent showed the need for revision in deep water conditions, as reported in the literature. The results of the pile group experiments revealed the noticeable impacts of piles spacing on the local scour. The bigger pile spacing caused a feeble interaction of wake-horseshoe vortices, leading to a decrease of the scour depth; the separate view of the scour holes was generated at individual piles. Finally, the results were compared with commonly used comprehensive models. The findings of this study can be applied for the appropriate selection and positioning for the countermeasure of the scour at bridge piers.

M. Mokari,
Volume 24, Issue 4 (2-2021)
Abstract

Optimal use of water resources seem to be necessary due to climate change and the recent drought conditions. One of the most important and effective management strategies is increasing water productivity in agriculture. Irrigation method and the use of different levels of nitrogen fertilizer are the effective factors in increasing the water productivity. Therefore, this study was conducted to investigate the effect of the irrigation method and nitrogen fertilizer on the harvest index and water productivity of two wheat cultivars with 36 treatments as a split-split plot based on a completely randomized design with three replications in the research farm of Natural Resources and Agricultural Research Center of Kashmar, during the 2018-2019 time period. The treatments were two irrigation methods including end blocked border and drip irrigation (tape) as  the main plots, three levels of the nitrogen fertilizer from urea source including 0, 50 and 100 kg/ha as the  sub plots and two cultivars of wheat including Pishgam and Sirvan as the sub-sub plots. The results showed that by changing the border irrigation method to the drip irrigation (tape) method, the harvest index and water productivity were increasesignificantly. The results also showed that grain yield and its components, including harvest index and water productivity, had no significant difference in 50 and 100 kg/ha nitrogen levels. On the other hand, grain yield and its components, harvest index and water productivity, were significantly higher in the Sirvan cultivar rather than the Pishgam one (P<0.01). According to the results obtained from this study, the drip irrigation method, 50 kg/ha nitrogen level and Sirvan cultivar could be recommended for the study region. 

Z. Ghorbanpour, O. Abessi, F. Kardel,
Volume 24, Issue 4 (2-2021)
Abstract

Drilling material from the tunnel of the Tehran-Shomal highway was estimated to be about 2.5 Million Cubic Meters by the project authorities. Sadly, from the beginning, the drilling materials had been deposited on the open space in the floodplain of the Chaloos river with slightest environmental considerations. During the previous years, weathering and leaching from the drilled materials besides the discharge of drain water from the tunnel had led to seriouse contaminations and the deterioration of the water quality of the Chaloos river. In this paper, the ecological risk of nonorganic pollutants due to drilled materials was investigated. The sampling was done from the excavated materials and river sediment in five different locations throughout a complete year. From the many pollutants, Nickel, Cadmium and Copper were chosen to be investigated. The results showed that almost 15 percent of the samples had a high degree of pollution, while 60 percent of them were clean and the other 25 percent included the highly contaminated ones. All samples were also estimated to have a low to high ecological risk.

S. Shakeri, A. Azadi, M. Saffari,
Volume 24, Issue 4 (2-2021)
Abstract

Determining the relative distribution of each chemical form of the elements and their relationship with the physical, chemical, and clay mineralogical properties of soils can help researchers to achieve the sustainable agricultural management. The present study was conducted to evaluate the chemical forms of four micronutrients (Zn, Cu, Fe and Mn) in some surface and subsurface soils of Kohgiluyeh and Boyer Ahmad province and their relationship with the physical, chemical and mineralogical properties of the soils. The results showed that the exchangeable and sorbed chemical forms of the studied elements were very low and negligible, but the residual, carbonate, and organic forms had the highest to lowest values of the chemical forms of these elements, respectively. Examination of the correlation of the chemical forms of these elements with soil properties showed the effective correlation of organic carbon values with the Zn chemical forms; also, there was a correlation between clay, silt, cation exchange capacity and calcium carbonate and the chemical forms of Cu, Fe and Mn. The correlation between the quantities of clay minerals and the chemical forms of these elements showed that the amounts of different forms of the studied elements were directly related to 2:1 clay silicate minerals (especially vermiculite). Evaluation of Fe and Mn chemical forms  also showed that the amounts of these elements were higher in the  soils with developed profiles (Alfisol and Mollisol), the  wetter climate and zeric moisture regime rather  than in soils with non-developed profiles (Entisols and Inceptisols) and a drier climate and a ustic moisture regime. In general, the results showed that variations of soil forming factors such as climate (as well as the  total amount of each micronutrients), could be effective on the chemical forms of micronutrients (especially on Mn and Fe);  these can be effective in the management of weakly to highly-developed soils orders.

S. Khalilian, M. Sarai Tabrizi, H. Babazadeh, A. Saremi,
Volume 24, Issue 4 (2-2021)
Abstract

In the present study, the SWAT hydrological model was developed for the upstream of the Zayandehrood dam to evaluate the inflow to this dam. Accordingly, after entering the meteorological and hydrometric information of the region, the runoff simulation was performed. Due to the high volume of entrances to the Zayandehrood Dam, Shahrokh Castle hydrometric stations were selected as the base station for calibration and validation during the statistical period of 1990-2015. After hydrological simulation and accuracy of results, climate prediction was performed using the fifth model of the climate change for the RCP scenarios. According to the forecast, by using climate change models, the temperature could be assumed to increase in all models and the highest rate of increase would occur under the RCP 8.5 climate scenario. After evaluating climate change in different diffusion scenarios, the runoff of the basin was simulated in the SWAT model. The simulation results of runoff in the catchment area showed that although the amount of rainfall was increased in the region, increasing the temperature had a greater effect, reducing the amount of runoff in the basin. Based on the results of climate change, hydrological simulation was performed using the SWAT model. The results showed that the effect of diffusion scenarios in the region was different, causing an increase in temperature and precipitation. The highest increase was observed in the RCP8.5 scenario, which was consistent with the nature of this emission scenario, with the highest emission of greenhouse gases and carbon dioxide. Then, the evaluation of the hydrological model was done; the results showed that although the amount of rainfall in the region had been increased, the increase in temperature of this basin had a greater effect and efficiency in reducing the amount of runoff.

F. Kaboudvand, S. S. Mehdizadeh,
Volume 24, Issue 4 (2-2021)
Abstract

The Khanmirza plain is one of Iran’s fertile plains that is located in Chaharmahal Bakhtiari province. Agriculture in the area is very prosperous, but the lack of rain and over-harvesting from consumption wells has led to a reduction in groundwater levels, even causing land subsidence. Moreover, the high usage of chemical manures, especially nitrate manures, has increased the number of solutes and chemical materials in the groundwater. Thus, for this plain, making artificial ponds is important to modify the storage of the aquifer. In this study, to define the optimum locations of the artificial ponds, the effect of 12 factors was considered. The analytic hierarchy process (AHP) method was used to introduce the weight of each parameter in comparison to other factors. Afterward, the spatial priority of all factors was derived using the Geographic Information System (GIS) technique. The produced GIS layers were laid on each other and the optimum locations were obtained. Agricultural drainage was an effective index for recharge purposes. The results of the study demonstrated that groundwater level decline got the maximum weight (40%), while the land slope had the minimum weight, since the vicinity to available floodways was considered as an independent criterion. The results also showed that regions with a total area of 18 km2 in north and north-west of the Khanmirza plain could be the optimum and most suitable places for artificial ponds construction.

O. Asadi Asadabad, S. H. Matinkhah, Z. Jafari, H. Karim Mojeni,
Volume 25, Issue 1 (5-2021)
Abstract

In order to investigate the effect of the type drip of irrigation methods, subsurface irrigation and furrow irrigation on the domestication of Hedysarum criniferum Boiss., an experiment with a  randomized complete block design with three replications was implemented  at Isfahan University of Technology for two years (2016 to 2018) . For this purpose, clay pipes were made and the plant was cultivated on the sides of clay pipes and types. Also, furrow irrigation treatment was applied as the control. During the experiment, all treatments received the same water and finally, some growth parameters were measured. The results of the study showed improvement in height (0.43 and 0.34), canopy cover (0.66 and 0.52), stem number (0.44 and 0.85), chlorophyll index (0.45 and 0.45), seed emergence (0.75 and 0.30), plant survival (0.78 and 0.55), yield (0.23 and 0.35), and water use efficiency (0.25 and 0.25) under type drip irrigation treatment, as compared to subsurface and furrow irrigation, respectively (P<0.05). In general, the type drip treatment is recommended in the early years of planting; however, since the maximum production potential of this plant is in the third year onwards, it is necessary to examine the results in the following years to recommend the proper irrigation method, especially the use of subsurface irrigation. 

N. Hasanzadeh, L. Gholami, A. Khaledi Darvishan, H. Yonesi,
Volume 25, Issue 1 (5-2021)
Abstract

Soil erosion is one of the most serious environmental issues in the world, causing soil degradation, reduction of land productivity, increasing flood, water pollution and pollutions transportation; it is also a serious threat to sustainable development in the world. Therefore, the soil conservation and the prevention of soil erosion and use of conditioners as the nanoclay can be considered as a solution to improve   land productivity and protect environment. The present study was, therefore, conducted to address the effect of the application of montmorillonite nanoclay with three rates of 0.03, 0.06 and 0.09 t ha-1 on changing runoff and soil loss variables under laboratory conditions. The results showed that the nanoclay with the rate of 0.03 t ha-1 could decrease the runoff coefficient, soil loss and sediment concentration with the rate of 40.65, 88.38 and 82.19 percent, respectively. The average of soil loss in control treatment and conservation treatments of nanoclay with various rates was measured to be 3.76, 0.44, 1.33 and 3.16 g, respectively. Also, the results showed that the most sediment concentration was the control treatment with the rate of 5.84 g l-1 and the conservation treatments with nanoclay in the applied rates was 1.04, 3.47 and 2.96 g l-1, respectively. Also, the results showed that the nanoclay effect was significant on changing the soil loss and sediment concentration at the level of 99 percent. Finally, due to the effect, the use of this conditioner in natural conditions and investigation of the effects on environment and aggregates stability are recommended.


Page 49 from 55     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb