Showing 47 results for Hosseini
Kh. Hosseini, M. Kheirkhahn,
Volume 18, Issue 70 (winter 2015)
Abstract
Cohesive sediments have large specific surfaces which enable them to absorb other cohesive sediments and polar particles such as mud and sodium. Floccules form by joining these particles. The behavior of cohesive sediments in aquatic environments is completely different from that of granular sediments. Under certain value of shear stress, the structure formed from cohesive sediments is divided into smaller particles, which can be eroded easily. Up to now, researchers have proposed empirical formulas which correlate the rate of erosion to the bed shear stress and the rheological characteristics of cohesive sediments. In this study, the calibration and verification tests are performed on Mike21 software to attain the results more adjusted with the experimental data. Afterwards, the data are developed by the model and converted to the dimensionless form. Finally, an exponential function is proposed for the erosion rate in cohesive sediments. It is found that the coefficient of determination is 0.99
M. Karamian, V. Hosseini,
Volume 19, Issue 71 (spring 2015)
Abstract
Soil is one of the most important components in forests and distinguishing soil types and soil capability are first steps in forest management. The main aim of this study was to determine relationship between slope aspect and position, and chemical properties of the soil. Soil sampling was done in Tang-e-Dalab in Ilam province which is a part of southern Zagros. Samples were collected in both northern and southern slopes of oak stand (Quercus brantii). In each slope, three transects 50m apart were sampled. Overall number of samples was 60. After data normalization, the means were compared by Duncan test. Slope aspects influenced organic carbon and total nitrogen of soil. These parameters were higher in northern slope than southern one. Slope position showed a significant effect on C, N and P. Also, concentration of C, N and P were increased by moving down the position. Most amounts of C, N and P were 5.84%, 0.58% and 108.19 mg/kg in bottom, middle and bottom of northern aspect, respectively. The least amounts of C, N and P were 3.31%, 0.24% and 37.83 mg/kg in bottom, middle of southern aspect and top of northern aspect, respectively. The results of this study confirmed that nutrient concentration in northern slope was more than southern slope and nutrient concentration in soil was increased by moving downward.
D. Rajabi, H. Karami, Kh. Hosseini, S. F. Mousavi , S. A. Hashemi,
Volume 19, Issue 73 (fall 2015)
Abstract
Non-linear Muskingum model is an efficient method for flood routing. However, the efficiency of this method is influenced by three applied parameters. Therefore, efficiency assessment of Imperialist Competition Algorithm (ICA) to evaluate optimum parameters of non-linear Muskingum model was addressed in this study. In addition to ICA, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) were also used to find an available criterion to verify ICA. In this regard, ICA was applied for Wilson flood routing then, routing of two flood events of DoAab Samsami River was investigated. In case of Wilson flood, the target function was considered as the sum of squared deviation (SSQ) of observed and calculated dischargem. Routing two other floods, in addition to SSQ, another target function was also considered as the sum of absolute deviations of observed and calculated discharge. For the first floodwater based on SSQ, GA indicated the best performance however, ICA was in the first place, based on SAD. For the second floodwater, based on both target functions, ICA indicated a better operation. According to the obtained results, it can be said that ICA could be recommended as an appropriate method to evaluate the parameters of Muskingum non-linear model.
A. Hosseini, M. Shafai- Bajestan,
Volume 20, Issue 75 (Spring 2016)
Abstract
Assessing the root system and its tensile strength is necessary for determine the impact of roots in increasing the soil shear strength. The present study aims to investigate effects of slope and flow of riverbank on root system of riparian POPULOYS trees. In a relatively direct interval, 6 riparian POPULOYS trees were chosen on the slope of Simereh riverbank. To assess the root system, the circular profiles trenching method was utilized. The surface around each tree was divided into four quadrants: upper quadrant, lower quadrant, in slope direction and in flow direction. In every quadrant, number and diameter of roots were measured. The obtained results showed that the highest number of roots were in 90-100 cm depth. 59% of Roots, in the slop direction and 53% of roots in flow direction, were located in the top quadrant. Approximately, 97% of roots had up to 20 mm diameter. The greatest difference in the number of roots in upper, lower, in slop direction and in flow direction quadrants, were seen in diameters up to 5 mm. In slope direction, this difference was almost 2.7 times more than the difference seen in flow direction. The average ratio of root cross-section was 0.26%. The obtained results indicate that the root system of riparian POPULOYS trees on the riverbank is asymmetrical.
D. Dezfooli, S. M. Hosseini-Moghari, K. Ebrahimi,
Volume 20, Issue 76 (Summer 2016)
Abstract
Precipitation is an important element of the hydrologic cycle and lack of this data is one of the most serious problems facing research on hydrological and climatic analysis. On the other hand, using satellite images has been proposed by many researchers as one of practical strategies to estimate precipitation. The present paper aims to evaluate the accuracy of satellite precipitation data, provided by PERSIANN and TRMM-3B42 V7 in Gorganrood basin, Iran. To achieve this aim, two sets of daily precipitation ground-based data, 2003 to 2004 and 2006 to 2007, from six stations of Gorganrood basin, named; “Tamer”, “Ramian”, “Bahalkeh-ye Dashli”, “Gorgan Dam”, “Ghaffar Haji” and “Fazel Abad” have been used in this paper. The evaluation indices have been calculated and analyzed in different time scales, including daily, monthly and seasonal. The results indicated that the two above mentioned satellite models are not accurate in daily scale. However, they showed reasonable accuracy in monthly and seasonal scales. The highest correlations between satellites and recorded data in daily and monthly scales, for TRMM-3B42 V7 in “Gorgan Dam” and “Bahlke Dashlei” stations, are 0.397 and 0.404, respectively. The comparison of measured and satellite data of winter showed better agreement for PERSIANN model. However, TRMM-3B42 V7 shows better correlation in other seasons. The results also indicated that while TRMM-3B42 data displays higher correlation with measured data, PERSIANN provids better results in predicting the number of rainy days.
M. Javahery-Tehrani, S. F. Mousavi, Kh. Hosseini,
Volume 20, Issue 77 (Fall 2016)
Abstract
Morphologic study of rivers is very important in stabilization and determination of river boundaries. Dams are structures which have the highest effects on river morphology. Studies of river changes are usually time-consuming and possible only in the long-term timescales. To detect these changes, using satellite images over specific time periods and cartographic methods are useful. In the present study, morphological changes of Zayandehrud River, at downstream of Zayandehrud dam, between hydrometric stations of Sad-e-Tanzimi and Pol-e-Zamankhan, were investigated through 7 series of Landsat satellite photos from 1980 to 2015 by applying ENVI 4.8 and Arc GIS10.2 software. Based on the results, the method of enhancing the contrast as saturated linear expansion, along with the edge enhancement filter, was found an appropriate method for determining the boundary between land and water. In the next step, the river path was entered into Arc GIS 10.2, and geometric parameters of the river such as wavelength, sinuosity ratio, central angle and radius of circle tangent to the curve were determined. Also, statistical analysis of geometric parameters was performed by applying SPSS software. Results showed that from 1986 up to now the sinuosity ratio has risen from 2.14 to 2.38, while the radius of river curvatures and wavelength of meanders have decreased by 5% and 11.4%, respectively. Overall, the river has decreased its arcs’ curvature and bends have been moved to downstream. The main cause of this phenomenon is constructions in the river borders (e.g. in Markadeh and Cham-Kaka), which have disturbed the natural situation of the river. In Cham-Jangal, Cham-Khalifeh and Cham-Ali regions, due to the increase in slope and improper vegetation cover, bank erosion has reached to its highest degree. In general, although flood events have been contained by Zayandehrud dam, yet the river has great potential for erosion in the meandering sections.
M. Hosseini, M. Ghafouri, Z. Tabatabaei, M. R. Mokarian,
Volume 20, Issue 78 (Winter 2017)
Abstract
In the last decades, climate change and fluctuation of water balance have been the main reason to apply hydrologic models for estimating quality and quantity of water components as efficient tools in water planning of critical conditions. In addition, these hydrologic models with potential to study the effects of watershed management practices on the runoff components are suitable tools for optimization of watershed operations at present and future. In this research Soil and Water Assessment Tools (SWAT) model has been applied to estimate groundwater runoff for 6 provinces such as Eilam (Golgol Catchment), Boushehr (Baghan Catchment), Khozestan (Morghab Catchment), Fars (Shekastian Catchment), Kohkiloyeh & Boyer Ahmad(Tange Birim Catchment) and Hormozgan (Daragah Catchment) which are located in south and south west of Iran. In order to evaluate the performance of the model, hydrological data, soil, land use and Digital Elevation Model (DEM) entered for each catchment to run the SWAT model. SWAT-CUP with SUFI2 program was used for simulation, uncertainty and validation with 95ppu. P-factor and R-factor are two internal evaluation factors in SUFI2 program and indicators such as the coefficient of determination (R2) and Nash- Sutcliffe (NS) were used for evaluation of the model. The Nash-Sutcliffe coefficients in six mentioned catchments for calibration period are 0.66, 0.73, 0.40, 0.32, 0.53 and 0.78. They are 0.49, 0.48, 0.42, 0.45, 0.46 and 0.62 for validation period, respectively. Model calibration and validation results showed good performance in estimating the water balance of the basins studied. Except for Shecastian catchment, the evaluation results showed acceptable and favorable results for water balance in the study area.
M. Nadi, A. Golchin, E. Sedaghati, S. Shafie, S. J. Hosseini Fard, G. Füleky,
Volume 21, Issue 1 (Spring 2017)
Abstract
Soil organic matter is the largest source of organic carbon in the soil surface which played an enormous role in restoring balance, environmental sustainability, soil elements and climatic conditions. Organic materials influence physical, chemical and biological properties of soil and thus soil fertility directly and indirectly. The amount, type and composition of organic matter are different in different soil and climatic conditions. Different soil components can hold different combination of soil organic matter. In this study soil samples were collected from virgin, Populus and Alnus forests from Guilan Province, Iran. The amount of organic matter in the original samples and sand, silt and clay fractions were measured and the quality of organic carbon (13C) and hydrogen (1H) were determined in fractions by Nuclear Magnetic Resonance. Based on the results the amount of organic carbon in the original samples of Alnus forest was highest. among fractions, clay had the highest amount of organic carbon. The result of Nuclear Magnetic Resonance showed presence of different aliphatic and aromatic carbons and hydrogen in different samples. Virgin forest had the highest proportion of alkyl to oxygenated alkyl carbon ratio and Alnus forest showed the highest ratio of aliphatic to aromatic carbon,. Both mentioned ratios was higher in clay fraction than other two fractions.
F. Hosseini, M. R. Mosaddeghi, M. A. Hajabbasi, M. R. Sabzalian, M. Soleimani, M. Sepehri,
Volume 21, Issue 2 (Summer 2017)
Abstract
Soil water repellency can affect several soil properties such as aggregate stability. Soil texture and organic matter are two main internal factors responsible for the variability of soil water repellency. Major sources of organic matter in soil include plant residues, and exudates of plant roots and soil microorganisms. Tall fescue (Festuca arundinacea Schreb.) as an important cool-season perennial forage grass is usually infected by a fungal endophyte (Epichloë coenophiala) which often enhances resistance to biotic and abiotic stresses as well as altering the litter decomposition rate and soil properties. In this study, the effects of endophyte-infected (E+) and endophyte-free (E−) tall fescue residues (in three different levels of 0, 1 and 2%) on soil organic carbon, basal microbial respiration, water-dispersible clay and water repellency index (determined by intrinsic sorptivity method) were investigated in four texturally-different soils in the laboratory. E+ and E− tall fescue residues were completely mixed with moist soil samples and then were incubated at 25 °C. During two months of incubation period, the amended soil samples were subjected to 10 wetting and drying cycles and then, the above-mentioned soil properties were measured. The results indicated that soil organic carbon and water-dispersible clay were greater, while basal soil respiration and repellency index were lower in fine-textured soils. Water repellency index was increased by production of hydrophobic substances (for the rate of 1%) and was reduced by induced greater soil porosity (for the rate of 2%). Presence of endophyte in plant residues had no significant effect on water sorptivity, ethanol sorptivity and water repellency index; nevertheless, E+ residues increased soil organic carbon and decreased water-dispersible clay significantly. Overall, it is concluded that tall fescue residues, especially those with E+, can improve soil physical quality due to improving soil organic carbon storage and water repellency index and decreasing water-dispersible clay (as an index for aggregate instability). These E+ species and the residues have great potential to be used in sustainable soil conservational managements.
M. Hosseini, E. Adhami, H. R Owliaie,
Volume 22, Issue 1 (Spring 2018)
Abstract
Cadmium (Cd) is of special importance among heavy metals because its toxicity to the plant is 20 times higher than other heavy metals. The present study was conducted to evaluate the trend of available soil Cd changes over time and its relationship with soil properties. Treatments consisted of 13 soil samples and two Cd rates (12.5 and 25 mg kg-1) as a factorial in a complete randomized design with two replications. DTPA extractable Cd was measured upon 5, 10, 20, 30, 60 and 90 days after adding Cd rates to the soils. The results showed that DTPA extractable Cd was increased as Cd application rates was raised in all soils. DTPA extractable Cd was decreased over time; however, at the end of the experiment, much of the added cadmium to the soil remained in use. Among the soil properties, calcium carbonate showed a significant negative correlation with DTPA extractable Cd in most of the incubation times in both Cd rates. DTPA extractable Cd also showed a significant negative correlation with pH and soil sand and a significant positive correlation with OC. Also, the results of the fitting of cadmium adsorption data with the kinetic equations showed that the exponential function equation was the most suitable kinetics descriptive equation for variations in cadmium adsorption in the studied soils.
P. Rostamizad, V. Hosseini, K. Mohammadi Samani,
Volume 22, Issue 2 (Summer 2018)
Abstract
Trees crown can be regarded as main factor contributing to the conservation and support of soil in many ecosystems including semiarid forests in Zagross. The aim of this study was to find out the effect of tree crown of pictachio (Pistacia atlantica Desf) on N, OC, P, pH, EC and the texture of the soil. Soil samples were collected in and outside the crown of 5 single pistachio trees on four directions of each tree in a northern slope from the 0-5 cm depth of soil in the Sarvabad region, Kurdistan. The results of this study showed that the amount of the soil organic carbon was decreased from 6.71% in the soil inside tree crowns to 4.73% in the soils outside the tree canopies. The soil inside trees had a higher concentration of soil nitrogen (0.406%) than the one outside (0.224%) the tree crown; the concentration of phosphorus was measured to be 32.7 mg/kg in the soil inside canopy, while it was 21.1 mg/kg in the soil of outside the tree canopy. EC under the tree crowns was more than that outside the canopy. The results, therefore, showed that soil texture was lighter inside the canopy, as compared to outside; however, the acidity of the soil was not affected by tree crowns and no significant differences were observed in different areas of the crown. Therefore, Persian turpentine trees have positive impacts on the soil properties in Zagros forests and eliminating them will lead to the significant loss of soil fertility and greater soil erosion.
R. Moosapour, S. F. Mousavi, Kh. Hosseini,
Volume 23, Issue 4 (Special Issue of Flood and Soil Erosion, Winter 2019)
Abstract
Occurrence of heavy floods in rivers causes a lot of damages and losses. In this research, to highlight the river-training reaches in 10.9 km of Babolrud River, first, using topographic map of the area, the Tin layer was created in GIS software. Then, using the HEC-GeoRAS extension, the main route and cross sections of the river were prepared and introduced to the HEC-RAS model. River discharge with return periods of 2 to 200 years was calculated. Flow analysis in the agricultural and urban areas was performed and the areas which need training measures such as flood-retaining walls and levees were specified and designed. The structural design, stability control and sliding was performed based on the Standard No. 518, using RetainWall software, and design and control of levee stability was performed based on the Standard No. 214, using GeoStudio software. The cost of project implementation was estimated based on the Price List of 2017. The output of HEC-RAS software showed that height of flood-retaining wall in 3 urban reaches ranged between 1.73 to 2.8 m and in 5 agricultural reaches ranged between 1.46 to 2.25 m. It was concluded that the overall cost of levee implementation is about 9.01 billion Rials, of gravity concrete flood-retaining wall is about 9.26 billion Rials and of concrete cantilever inverted T shape flood-retaining wall is about 10.05 billion Rials. Thus, using flood-retaining levee is the most economical option.
A. Atarodi, H. Karami, A. Ardeshir, Kh. Hosseini,
Volume 24, Issue 1 (Spring 2020)
Abstract
In general, engineering designs need to optimize the factors affecting the under-study phenomenon; however, this is often a costly and time-consuming process. In this regard, new methods have been developed to optimize with fewer tests; thus, they can make the whole process more affordable. In this study, Taguchi and Taguchi-GRA methods were used to design the geometric parameters of the protective spur dike in order to optimize their efficiency in reducing the scouring in a series of spur dikes. The results of both methods showed the optimal ratio of the length of the protective spur dike to the length of the first spur dike was 2.5 and the angle of the protective spur dike was 90 °. However, the ratio of the length of the protective spur dike to the length of the main spur dike in the Taguchi method was 0.8 and in the Taguchi-GRA method, it was 0.6. In addition, using variance analysis showed that the distance between the protective spur dike from the first spur dike, the protective spur dike angle, and the length of the protective spur dike were, respectively, the most effective on the performance of the protective spur dike. The results of this study, therefore, indicate that both methods are highly effective in optimization and, therefore, can be useful in the hydraulic engineer studies.
M. Farokhi, H. Ansary, A. R. Faridhosseini,
Volume 24, Issue 1 (Spring 2020)
Abstract
Estimation of soil moisture at various temporal and spatial scales is a key to the strategic management of water resources. Satellite-based microwave observations have coarse spatial resolution despite widespread and continuous of the provision surface soil moisture (SSM). In this study, the SSM data from the Advanced Microwave Scanning Radiometer 2 (AMSR2) 25km resolution were used and these products were downscaled by three parameters retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) to 1km resolution. In the next step, the integration of the SSM downscaling model with SMAR model was used to monitor the root zone soil moisture(RZSM) in the study area (Rafsanjan plain). In order to evaluate the performance of the proposed method, the SSM and the soil profile moisture were measured at 10 points in the Rafsanjan plain. Comparison of AMSR2 25k SSM and downscaled SSM with the field measurement data showed that the mean of total stations for the correlation coefficient(R) was increased from 0.540 to 0.739 and the mean absolute error(MAE) and the root mean square(RMSE) were reduced from 0.039 and 0.040 to 0.018 and 0.020, respectively. Moreover, the results obtained from the validation of the RZSM values showed that the proposed method could estimate the RZSM with high accuracy and indicate the variations.
M. Alinezhadi, S. F. Mousavi, Kh. Hosseini,
Volume 25, Issue 1 (Spring 2021)
Abstract
Nowadays, the prediction of river discharge is one of the important issues in hydrology and water resources; the results of daily river discharge pattern could be used in the management of water resources and hydraulic structures and flood prediction. In this research, Gene Expression Programming (GEP), parametric Linear Regression (LR), parametric Nonlinear Regression (NLR) and non-parametric K- Nearest Neighbor (K-NN) were used to predict the average daily discharge of Karun River in Mollasani hydrometric station for the statistical period of 1967-2017. Different combinations of the recorded data were used as the input pattern to predict the mean daily river discharge. The obtained esults indicated that GEP, with R2= 0.827, RMSE= 59.45 and MAE= 26.64, had a better performance, as compared to LR, NLR and K-NN methods, at the validation stage for daily Karun River discharge prediction with 5-day lag, at the Mollasani station. Also, the performance of the models in the maximum discharge prediction showed that all models underestimated the flow discharge in most cases.
A. Rezapour, M. Hosseini, A. Izady,
Volume 25, Issue 4 (Winiter 2022)
Abstract
Integrated assessment of the watershed is critical in arid and semi-arid areas due to the severe water stress in these regions. Data and information are an essential part of decision making and water governance to obtain integrated water resources management at the watershed scale. Water accounting is a helpful tool to organize information and present them as the standard indicators to achieve this goal. Therefore, the objective of this study is to implement the Water Accounting Plus framework (WA+) in the Ferizi watershed located in the Khorasan-e Razavi Province. In this study, water accounting indicators of the Ferizi watershed for a period of 28 years (1990-2017) and wet (1990-1997) and dry (1998-2009) periods were calculated using the SWAT model. The calculated indicators showed that the amount of manageable water and usefulness of consumption (transpiration) is low in the watershed and a large part of the share of irrigation in the watershed is provided by groundwater resources. Generally, the results of this study showed that the use of the SWAT model, WA+ framework, and analysis of water accounting indicators play a significant role in assessing the agricultural and hydrological conditions of the watershed. The proposed approach in this study can help managers make enlightened decisions to keep the sustainability of the watershed.
P. Fattah, Kh. Hosseini, A.a. Hashemi,
Volume 26, Issue 3 (Fall 2022)
Abstract
Splash (raindrop) erosion plays an significant role in soil loss, especially in arid and semi-arid regions with poor vegetation. In this paper, by analyzing the pattern of rainfalls that occurred during 26 years in four basins located in Semnan County, their effect on the pattern of eroded sediments from the basin was investigated. Sedimentary layers from the sampling of retarding reservoir sediments in 2017 were related to the corresponding precipitations. Due to the occurrence of the highest amount of rainfall in each quarter of rainfall, rainfall hyetographs were divided into four categories. Cumulative precipitation curves with similar quartiles were drawn in one shape and compared with sediment curves and vice versa taking into account the physical characteristics of the basin. The results showed that the Aliabad basin (with less slope and more elongation) with an effective quarter of type 3 had the highest similarity in precipitation and sediment patterns. Also, the Western Soldereh basin (with the highest slope and the least elongation) with an effective quarter of type 2 had the least similarity in precipitation and sediment patterns. The results indicate the vital role of rainfall patterns on the resulting sediment patterns, which show up to 85% similarity.
H. Babajafari, Sh. Paimozd, M. Moghaddasi, M. Hosseini Vardanjani,
Volume 26, Issue 3 (Fall 2022)
Abstract
Drought is one of the most complex natural disasters due to its slow onset and long-term impact. Today, the use of remote sensing techniques and satellite imagery has been considered a useful tool for monitoring agricultural drought. The objective of the present study was to evaluate spatial and temporal monitoring of agricultural drought in the lake Urmia catchment area with the ETDI drought index which is calculated from Nova satellite images based on actual evapotranspiration from the SEBS algorithm and compared with the ground index SPI. For this purpose, 248 AVHRR sensor images and NOAA satellites during the statistical period of 1998-2000 and 17 meteorological stations with a statistical period of 30 years were used to calculate the indicators. To determine agricultural lands, six thousand points were marked for different uses and their actual evapotranspiration was calculated using the SEBS algorithm. The results showed that with the onset of the drought period in 1998, the ETDI index indicated 9.4% in weak drought conditions in May and 90.6% in normal conditions. Over time, in June of 1998, the situation was different with 95% in a weak drought situation and 5% in a normal situation for the city of Tabriz. In July, the entire catchment area experiences a slight drought. Then, in August, 84% of the basin is in normal condition and 16% in Tabriz and Urmia are declared weak drought. It was also founded that the ETDI drought index due to the combination of visible and infrared bands and its combination with terrestrial data has a physical meaning and has high certainty and predicts drought faster and more accurately.
A.s. Hosseini Khezrabad, A.a. Vali, A.h. Halabian, M.h. Mokhtari,
Volume 27, Issue 4 (Winter 2023)
Abstract
Desertification is one of the most serious ecological environmental problems in the arid regions. Quantitative assessment of the desertification process is important for the prevention and control of desertification. In this research, the IMDPA model was used to evaluate the quantitative and qualitative desertification situation in the northwest of Yazd. Three criteria of soil, vegetation, and wind erosion were considered in this model. Several indicators were defined for each criterion with a weight of 0 (low) to 4 (very severe). The geometric mean of all three criteria was used to prepare a map of sensitive areas to desertification in ArcGIS. The results indicated that more than 92% of the research area was in the extreme class of desertification, and only the dunes work unit was in a very intense class. Finally, the whole of the research area with a final score of 3.04 was placed in the extreme class of desertification intensity. Also, the soil criterion with the highest weight score of 3.26 has had the greatest impact on the desertification of the northwest region of Yazd. Therefore, it is necessary to implement remedial and revitalization operations in this region according to the expansion of the phenomenon of desertification and the high influence of the soil criteria. The results of the research showed the intensity of desertification, the potential, and the sensitivity of the region to the phenomenon of desertification can be referred to as a departure from the natural functioning of the system.
B. Moravejalahkami, N.a. Ebrahimipak, S. N. Hosseini,
Volume 28, Issue 2 (Summer 2024)
Abstract
Evapotranspiration variations (ET0) were investigated and analyzed using Minitab16 software for the 2010-2019 period using the Nizab system's data in Yazd province, and then ET0 was predicted until 2027. Based on the results, the increase of ET0 in cities of Yazd province was affected by the enhancement in wind speed and weather temperature, and the decrease in relative humidity from 2010 to 2019. To determine the appropriate model, Ardakan, Abarkooh, and Taft cities were selected as a representative in each climatic group, and ET0 data for the years 2010 to 2015 were considered as the input data of the software and ET0 data for the years from 2016 to 2019 were used to validate the determined model. The prediction of the determined models showed an increasing trend of ET0 for cold seasons in Ardakan and Abarkoh by 2027. Also, the model prediction showed a decreasing trend of ET0 for hot seasons in Taft by 2027. Also, the ET0 will not change significantly in cold seasons. In Abarkoh and Ardakan cities, autumn-spring crops such as wheat and in Taft city, spring-summer crops such as sunflower will be more affected by ET0 variations.