Showing 47 results for Hosseini
M. Farokhi, H. Ansary, A. R. Faridhosseini,
Volume 24, Issue 1 (Spring 2020)
Abstract
Estimation of soil moisture at various temporal and spatial scales is a key to the strategic management of water resources. Satellite-based microwave observations have coarse spatial resolution despite widespread and continuous of the provision surface soil moisture (SSM). In this study, the SSM data from the Advanced Microwave Scanning Radiometer 2 (AMSR2) 25km resolution were used and these products were downscaled by three parameters retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) to 1km resolution. In the next step, the integration of the SSM downscaling model with SMAR model was used to monitor the root zone soil moisture(RZSM) in the study area (Rafsanjan plain). In order to evaluate the performance of the proposed method, the SSM and the soil profile moisture were measured at 10 points in the Rafsanjan plain. Comparison of AMSR2 25k SSM and downscaled SSM with the field measurement data showed that the mean of total stations for the correlation coefficient(R) was increased from 0.540 to 0.739 and the mean absolute error(MAE) and the root mean square(RMSE) were reduced from 0.039 and 0.040 to 0.018 and 0.020, respectively. Moreover, the results obtained from the validation of the RZSM values showed that the proposed method could estimate the RZSM with high accuracy and indicate the variations.
M. Alinezhadi, S. F. Mousavi, Kh. Hosseini,
Volume 25, Issue 1 (Spring 2021)
Abstract
Nowadays, the prediction of river discharge is one of the important issues in hydrology and water resources; the results of daily river discharge pattern could be used in the management of water resources and hydraulic structures and flood prediction. In this research, Gene Expression Programming (GEP), parametric Linear Regression (LR), parametric Nonlinear Regression (NLR) and non-parametric K- Nearest Neighbor (K-NN) were used to predict the average daily discharge of Karun River in Mollasani hydrometric station for the statistical period of 1967-2017. Different combinations of the recorded data were used as the input pattern to predict the mean daily river discharge. The obtained esults indicated that GEP, with R2= 0.827, RMSE= 59.45 and MAE= 26.64, had a better performance, as compared to LR, NLR and K-NN methods, at the validation stage for daily Karun River discharge prediction with 5-day lag, at the Mollasani station. Also, the performance of the models in the maximum discharge prediction showed that all models underestimated the flow discharge in most cases.
A. Rezapour, M. Hosseini, A. Izady,
Volume 25, Issue 4 (Winiter 2022)
Abstract
Integrated assessment of the watershed is critical in arid and semi-arid areas due to the severe water stress in these regions. Data and information are an essential part of decision making and water governance to obtain integrated water resources management at the watershed scale. Water accounting is a helpful tool to organize information and present them as the standard indicators to achieve this goal. Therefore, the objective of this study is to implement the Water Accounting Plus framework (WA+) in the Ferizi watershed located in the Khorasan-e Razavi Province. In this study, water accounting indicators of the Ferizi watershed for a period of 28 years (1990-2017) and wet (1990-1997) and dry (1998-2009) periods were calculated using the SWAT model. The calculated indicators showed that the amount of manageable water and usefulness of consumption (transpiration) is low in the watershed and a large part of the share of irrigation in the watershed is provided by groundwater resources. Generally, the results of this study showed that the use of the SWAT model, WA+ framework, and analysis of water accounting indicators play a significant role in assessing the agricultural and hydrological conditions of the watershed. The proposed approach in this study can help managers make enlightened decisions to keep the sustainability of the watershed.
P. Fattah, Kh. Hosseini, A.a. Hashemi,
Volume 26, Issue 3 (Fall 2022)
Abstract
Splash (raindrop) erosion plays an significant role in soil loss, especially in arid and semi-arid regions with poor vegetation. In this paper, by analyzing the pattern of rainfalls that occurred during 26 years in four basins located in Semnan County, their effect on the pattern of eroded sediments from the basin was investigated. Sedimentary layers from the sampling of retarding reservoir sediments in 2017 were related to the corresponding precipitations. Due to the occurrence of the highest amount of rainfall in each quarter of rainfall, rainfall hyetographs were divided into four categories. Cumulative precipitation curves with similar quartiles were drawn in one shape and compared with sediment curves and vice versa taking into account the physical characteristics of the basin. The results showed that the Aliabad basin (with less slope and more elongation) with an effective quarter of type 3 had the highest similarity in precipitation and sediment patterns. Also, the Western Soldereh basin (with the highest slope and the least elongation) with an effective quarter of type 2 had the least similarity in precipitation and sediment patterns. The results indicate the vital role of rainfall patterns on the resulting sediment patterns, which show up to 85% similarity.
H. Babajafari, Sh. Paimozd, M. Moghaddasi, M. Hosseini Vardanjani,
Volume 26, Issue 3 (Fall 2022)
Abstract
Drought is one of the most complex natural disasters due to its slow onset and long-term impact. Today, the use of remote sensing techniques and satellite imagery has been considered a useful tool for monitoring agricultural drought. The objective of the present study was to evaluate spatial and temporal monitoring of agricultural drought in the lake Urmia catchment area with the ETDI drought index which is calculated from Nova satellite images based on actual evapotranspiration from the SEBS algorithm and compared with the ground index SPI. For this purpose, 248 AVHRR sensor images and NOAA satellites during the statistical period of 1998-2000 and 17 meteorological stations with a statistical period of 30 years were used to calculate the indicators. To determine agricultural lands, six thousand points were marked for different uses and their actual evapotranspiration was calculated using the SEBS algorithm. The results showed that with the onset of the drought period in 1998, the ETDI index indicated 9.4% in weak drought conditions in May and 90.6% in normal conditions. Over time, in June of 1998, the situation was different with 95% in a weak drought situation and 5% in a normal situation for the city of Tabriz. In July, the entire catchment area experiences a slight drought. Then, in August, 84% of the basin is in normal condition and 16% in Tabriz and Urmia are declared weak drought. It was also founded that the ETDI drought index due to the combination of visible and infrared bands and its combination with terrestrial data has a physical meaning and has high certainty and predicts drought faster and more accurately.
A.s. Hosseini Khezrabad, A.a. Vali, A.h. Halabian, M.h. Mokhtari,
Volume 27, Issue 4 (Winter 2023)
Abstract
Desertification is one of the most serious ecological environmental problems in the arid regions. Quantitative assessment of the desertification process is important for the prevention and control of desertification. In this research, the IMDPA model was used to evaluate the quantitative and qualitative desertification situation in the northwest of Yazd. Three criteria of soil, vegetation, and wind erosion were considered in this model. Several indicators were defined for each criterion with a weight of 0 (low) to 4 (very severe). The geometric mean of all three criteria was used to prepare a map of sensitive areas to desertification in ArcGIS. The results indicated that more than 92% of the research area was in the extreme class of desertification, and only the dunes work unit was in a very intense class. Finally, the whole of the research area with a final score of 3.04 was placed in the extreme class of desertification intensity. Also, the soil criterion with the highest weight score of 3.26 has had the greatest impact on the desertification of the northwest region of Yazd. Therefore, it is necessary to implement remedial and revitalization operations in this region according to the expansion of the phenomenon of desertification and the high influence of the soil criteria. The results of the research showed the intensity of desertification, the potential, and the sensitivity of the region to the phenomenon of desertification can be referred to as a departure from the natural functioning of the system.
B. Moravejalahkami, N.a. Ebrahimipak, S. N. Hosseini,
Volume 28, Issue 2 (Summer 2024)
Abstract
Evapotranspiration variations (ET0) were investigated and analyzed using Minitab16 software for the 2010-2019 period using the Nizab system's data in Yazd province, and then ET0 was predicted until 2027. Based on the results, the increase of ET0 in cities of Yazd province was affected by the enhancement in wind speed and weather temperature, and the decrease in relative humidity from 2010 to 2019. To determine the appropriate model, Ardakan, Abarkooh, and Taft cities were selected as a representative in each climatic group, and ET0 data for the years 2010 to 2015 were considered as the input data of the software and ET0 data for the years from 2016 to 2019 were used to validate the determined model. The prediction of the determined models showed an increasing trend of ET0 for cold seasons in Ardakan and Abarkoh by 2027. Also, the model prediction showed a decreasing trend of ET0 for hot seasons in Taft by 2027. Also, the ET0 will not change significantly in cold seasons. In Abarkoh and Ardakan cities, autumn-spring crops such as wheat and in Taft city, spring-summer crops such as sunflower will be more affected by ET0 variations.