Showing 58 results for Heidar
R. Monjezi, M. Heidarnejad, A. R. Masjedi, M. H. Pourmohammadi, A. Kamanbedast,
Volume 23, Issue 2 (Summer 2019)
Abstract
Nonlinear weirs are regarded as important hydraulic structures for water level adjustment and flow control in channels, rivers and dam reservoirs. One example of non-linear weirs is shaped as curved-zigzag. The crest axis of these weirs is non-linear. At a given width, the crest length is greater than that of the conventional linear weirs. Thus, they achieve a higher flow rate for an identical hydraulic load. This research experimentally focused on the discharge coefficient and flow rate of curved weirs with three different curve radii in two triangular linear and zigzag shapes. The discharge coefficients of these weirs were comparatively explored in terms of the hydraulic performance as a function of the total hydraulic load to weir crest height ratio (hd/P) and curvature angle (θ) (or curve radius). The results indicated that for the same hydraulic load, the increase of θ (the decrease in curve radius) led to a lower discharge coefficient; this was first because of the increased topical rise of water level, and then the more indirect path with a greater curvature through which the flow had to transport. Both factors could negatively affect the water discharge coefficient. In practice, the runoff coefficient at a weir with a curve radius of R/w=1.25 was approximately 8.5% greater than that of a weir with a curve radius of R/w=0.75 under a hydraulic load of 0.2.
H. Davodi, A. R. Masjedi, M. Heidarneja, A. Bordbar, A. A. Kamanbedast,
Volume 23, Issue 2 (Summer 2019)
Abstract
In this study, some experiments were carried out in a rectangular plexiglass flume to study the effect of the cable around a vertical tripod and two piles groups with different angles. In this research, a series of experiments were performed by placing a cylindrical vertical pileand two piles groups with different angles separately in two modes including with cable and without cable. The experiments were carried out using three types of cable with various diameters, number of threads and thread angles at a constant discharge in clear water. In each experiment, scour depth at the end of the test was measured; then, the scour depth was calculated in different conditions using the obtained data. The best configuration in the vertical pier and piers group was found for the cable-pier diameter ratio of 0.1, the thread angle of 15° and the triple threads. The result indicated that the scour reduction was enhanced as the cable diameter and threads were increased and the thread angle was decreased. So in the piers group of 28 and 38°, scour depth was reduced to about 43, 49 and 56%.
J. Rouzegar, A. A. Kamanbedast, A. Masjedi, M. Heidarnejad, A. Bordbar,
Volume 23, Issue 3 (Fall 2019)
Abstract
Morning glory spillway is one of the spillways that used to passing of flood from high to low level. This spillway is used in the reservoir dams that are placed in narrow valleys and in many locations with high slope in reservoir walls. In the Morning glory spillways, the vortex flow can reduce discharge, discharge coefficient and the performance of spillway. The zigzag spillway, as another type, is introduced as a proper option for compensating the problem of passing maximum possible flow rate, usually encountered by spillways. In the present study, the experimental results of a physical model were used to develop a hydraulic design with squire and circle inlet and analysis method for Labyrinth Morning Glory Spillway. The analysis of experimental data in circle and square inlet showed, that increase in length of spillway and zigzag, causes decrease in the discharge coefficient. Finally the result of effect spillway inlet on flow rate demonstrate that discharge coefficient in square inlet is more than circle, whereas without vortex breaker.
O. Mohamadi, M. Heidarpour, S. Jamali,
Volume 23, Issue 3 (Fall 2019)
Abstract
Shortage of water resources and renewable per capita in last 30 years is put Iran on crisis threshold. Wastewater reuse is one of the battle solutions for water shortage and prevents wastewater depletion and environmental pollution. Thus, a pilot scale experiment was carried out to evaluate an integrated anaerobic/aerobic treatment for removal of BOD5 and COD, also to reduction of hydraulic retention time by considering optimum removal efficiency. The pilot was an anaerobic/aerobic bioreactor type under continuous-feeding regime based on a central composite design. The pilot was studied in different retention time and aeration was carried out between 5-15 hours. According to different retention times for COD removal efficiency, 24 hours was selected as optimum hydraulic retention time, that it is comparable to those obtained for 48 hours and over in plant roughly and could remove COD and BOD in acceptable ranges, results showed that average removal efficiency for BOD5 were 63.86 and 83.99 percent in aerobic and anaerobic phases, respectively. The average removal efficiency for COD was 76.5 and 74.35 percent for anaerobic and aerobic sections, respectively. The average removal efficiency for BOD5 and COD in this integrated aerobic-anaerobic pilot 95.24 and 94.8 percent, respectively.
Gh. Safarinejadi, M. Heidarnejad, A. Bordbar, M. H. Pourmohammadi, A. Kamanbedast,
Volume 23, Issue 4 (Special Issue of Flood and Soil Erosion, Winter 2019)
Abstract
The use of free launch jets in flip bucket structures with associated submerged ponds, in the appropriate geological, and topographic and hydraulic conditions, could have significant economic and safety benefits. In this research, the downstream scour phenomenon of a flip bucket jet was investigated in free conditions, as well as in the presence of a trapezoidal and triangular slot in the coastal manner with different layout intervals at flow rate of 9, with a total of 45 experiments. The results of this study showed that the presence of the slot had significant effects on the depth and range of scour, so that the fit bucket jet with alternate triangular slots reduced the scour by about 12.7%, as compared to the no slot mode. Moreover, the maximum scour depth occurred in the bucket mode with the alternate trapezoidal slots in the more favorable interval than the rest of the models. Then, the results were compared with several empirical formulas and Veronese A relation showed closer results to the actual values.
A. Saki, A. A. Kamanbedast, A. Masjedi, M. Heidarnejad, A. Bordbar,
Volume 23, Issue 4 (Special Issue of Flood and Soil Erosion, Winter 2019)
Abstract
After Hamidieh Diversion Dam near the city of Hamidieh, Karkheh River is divided into two streams known as Hufel and Nissan. At the lower flow rates, Nissan makes up a greater share than Hufel due to the steeper slope of the former. This study attempted to construct a hydraulic structure to appropriately divide water flow in Hufel. In a laboratory experiment, a flume with a 90-degree bend was used at Islamic Azad University of Ahvaz. Various experiments were conducted at different widths and heights. Furthermore, this model was simulated through CCHE2D, the results of which were compared against those of physical and mathematical models. The results indicated that the weir height increased the deviation flow percentage to the Hufel stream due to rising water level. Moreover, the deviation flow percentage to Hufel was declined as the weir width was increased due to falling water level. At Hufel, the installation of rectangular weir in different dimensions yielded the minimum of 34.3% and the maximum of 61.5% increase in the flow rate. In the normal mode without any weirs installed, however, there would be an increase in the flow rate, as compared to the mode where a weir has been installed. This can be associated with the flow controlled by the weir. On average, the deviation flow rate was increased by 2.8% in the weir mode and 7.7% in the weir-less one. An increase in the Froude number from 0.21 to 0.38 led to a lower average deviation flow rate by 19.3%. Moreover, the results of the simulation through CCHE2D were demonstrated to be largely similar to those of physical model experiments. However, an increase in the Froude number did not lead to a decline in the deviation flow rate (i.e. it remained constant). This trend was inconsistent with the results of the physical model.
S. A. Banishoaib, A. Bordbar, A. A. Kamanbedast, A. Masjedi, M. Heidarnejad,
Volume 23, Issue 4 (winter 2020)
Abstract
A ‘spillway’ is a structure used to provide the controlled release of flood water from upstream into downstream area of a dam. As an important component of every dam, a spillway should be constructed strongly, reliably and efficiently to be used at any moment. Labyrinth and stepped spillways are presented as appropriate modifications to those spillways hardly capable of managing the maximum potential discharge. Owing to their nonlinear crests for a given width, labyrinth and stepped spillways have a larger discharge rate than linear- crest spillways at an identical height. Compared to other energy dissipaters, the combination of stepped and labyrinth spillways is known as a very strong energy dissipater. In the following part, the combination of these two structures and their dimensional change for increasing the water- energy dissipation are addressed. To conduct this study, an experimental flume with a 90- degree bend in the Islamic Azad University of Ahwaz was used. In total, 90 experiments were conducted on three different labyrinth- shape stepped spillway models with two different lengths, three different widths, and five different discharges. Analysis of the results showed a greater energy loss reduction in triangular rather than rectangular or trapezoidal labyrinth- shape stepped spillways. In addition, energy loss was greater in labyrinth spillways with two cycles than those with one cycle. Energy loss was increased by raising the Froude number from 0.05 to 0.1; in contrast, energy loss was decreased with increasing the Froude number from 0.1 to 1.0, which was due to the submergence of steps, a decrease in the roughness of steps and an increase in the intensity of aeration.
R. Gharibvand, M. Heidarnejad, H. A. Kashkouli, H. Hasoonizadeh, A. Kmanbedast,
Volume 24, Issue 1 (Spring 2020)
Abstract
The flow fields over a trapezoidal labyrinth weir (two-cycle) and a piano key weir were simulated using Flow3D, studying the impact of each model on the flow field in the weirs and the coefficient of discharge in comparison with the available experimental data. Moreover, the models were investigated experimentally in a 12.5 m long, 0.3 m wide, and 0.4 m high rectangular flume under clear-water conditions. The results showed good agreement between the data from the numerical and experimental models. The piano key weirs had a higher coefficient of discharged compared with labyrinth weirs. The coefficient of discharge was observed to increase by 26 percent as the height of the PKW was increased by 50 percent (from 5 to 7.5 cm). This increase was 24 percent for labyrinth weirs.
P. Heidarirad, A. A. Kamanbedast, M. Heidarnezhad, A. R. Masjedi, H. Hasoonizadeh,
Volume 24, Issue 1 (Spring 2020)
Abstract
Water supply at a desired rate at any time to meet the water requirements regardless of river discharge must be considered in the general design of intakes provided that the needs do not exceed the river flow. Due to the lack of necessary information in this field and the importance of sediment transport to the lateral intakes at river bends, this study aimed at understanding the mechanism of this phenomenon. To this end, the combined effect of convergence and divergence in lateral intakes on the sediment transport was investigated. According to the results, the diversion discharge to the intake was increased by converging the laboratory flume. By narrowing and converging the end of the flume, the diversion discharge was increased further, so that as the flume was converged to the size (b/B) of 0.75 and 0.5, the diversion discharge to the intake was increased by 13.6% and 75%, respectively. This could be connected to narrowing, flow obstruction and backflow to the intake. In contrast, different results were found by diverging the flume. In other words, the inflow to the intake was decreased by diverging the flume. As the flume end was diverged, the diversion discharge was decreased further. By diverging the flume to the size (b/B) of 0.75 and 0.5, the diversion discharge to the intake was decreased by 21.9 and 31.8%, respectively. The average diversion discharge to the intake at 30, 60 and 90º was 13.2, 15.2 and 11.5%, respectively. By converting the flume to the size (b/B) of 0.75 and 0.5, the diversion sediment to the intake was increased by 18.5 and 71.4%. In contrast, by diverging the flume to the size (b/B) of 0.75 and 0.5, the diversion sediment to the intake was decreased by 35.4 and 49.9%, respectively.
P. Heidari, S. Hojati, N. Enayatzamir, A. Rayatpisheh,
Volume 24, Issue 3 (Fall 2020)
Abstract
The objective of this study was to investigate the impact of land use change (forest and rangelands to agriculture) on some micromorphological indices of soil quality in part of Rakat watershed, southwest of Iran. Accordingly, intact soil samples from 0-15 and 15-30 cm depths were collected from the above-mentioned land uses, and microstructure, type and abundance of voids, redoximorphic features, and humic substances were compared. The results showed that in the natural forest use, most of the voids are in the form of macropores, whereas after their conversion to agriculture, these types of voids have little development. In natural rangelands uses, voids were mainly oriented channels and of macropore type, but after switching from pasture to agriculture, they were mainly of vughy type. The results showed that natural forests (27.73%) and natural grasslands (22.28%) had more abundance of voids than forest to agriculture (19.01%) and grassland to agriculture (18.62%) land uses. In both natural forests and pasture land uses, various types of iron and manganese nodules, coatings, hypo-coatings, and quasi-coatings were significantly higher than agricultural land uses.
A. R. Bahrebar, M. Heidarnejad, A. R. Masjedi, A. Bordbar,
Volume 25, Issue 2 (Summer 2021)
Abstract
The combination of a labyrinth weir with an orifice is a proper solution for floating material to pass over the weir and transfer sediment through the orifice. Additionally, creating a slot in the overflow wing leads to higher discharge. This study examined four discharges (5, 10, 15, and 20 liters per second) with channel width and height of 30 and 40 cm in trapezoidal-orifice, square-orifice, and triangular-orifice labyrinth weirs in the laboratory and using Flow3D with RNG k-epsilon (k-ε) turbulence model, the results were compared with one another. Comparing the discharge flow over weirs and measuring the discharge coefficient among the mentioned models showed that the triangular-orifice labyrinth weir had the highest discharge rate. Moreover, the increased Ht/P ratio (Ht represents total hydraulic head; P denotes weir height) for all models resulted in the increased discharge coefficient. Due to the efficiency of this type of weirs, the highest discharge coefficient was obtained at low Ht/P ratios. At lower ratios, since there was free flow, the coefficient of weir discharge increased, and as the ratio increased, the weir was partially submerged. Furthermore, for the weir design, the best Ht/P ratio was between 0.13 to 0.41, and the maximum discharge coefficient (Cd = 1.2) was within this range.
A. Mehrabi, M. Heidar Pour, H. R. Safavi,
Volume 25, Issue 4 (Winiter 2022)
Abstract
Designing an optimal crop pattern and on-time water allocation of water resources along with deficit irrigation are among the optimal solutions to maximize the water economic efficiency index. In this paper, the simultaneous optimization of crop pattern and water allocation are discussed using the deficit irrigation method. The study area is located west of the Qazvin plain irrigation network. The six different levels of percentage reduction of irrigation rate (0, 0 to 10, 0 to 20, 0 to 30, 0 to 40, and 0 to 50%) in three climatic conditions consist of dry, normal, and wet years were compared. The best irrigation scenario was selected for each year, and the results were compared with the existing crop pattern of the same year. The new crop pattern included the main crops of the region and the addition of rapeseed. The objective was to reach the maximum net benefit per unit volume of water by considering the maximum extraction of monthly and annual surface and groundwater. The results showed that the best scenario in the dry year was maximum deficit irrigation up to 20%, in a normal year full irrigation, and a wet year maximum deficit irrigation up to 10%. The improvement of economic water productivity in a dry year was 52.2%, in a normal year 41.5%, and in a wet year is 19.6% compared to the existing crop pattern. The average percentage of annual irrigation supply increases from 64.3 to 91.7% in a dry year, from 70 to 100% in a normal year, and from 77.5 to 97.1% in a wet year. Also, the relative yield of all crops, especially wheat, alfalfa, and sugar beet significantly increases. Therefore, the gravitational search algorithm as an optimization model can be considered in selecting the suitable crop pattern and allocation of surface and groundwater resources concerning economic benefits in irrigation networks management.
N. Pourabdollah, J. Abedi Koupai, M. Heidarpour, M. Akbari,
Volume 25, Issue 4 (Winiter 2022)
Abstract
In this study accuracy of the ANFIS and ANFIS-PSO models to estimate hydraulic jump characteristics including sequence depth ratio, the jump length, the roller length ratio, and relative energy loss was evaluated in stilling basin versus laboratory results. The mentioned characteristics were measured in the stilling basin with a rectangular cross-section with four different adverse slopes, four diameters of bed roughness, four heights of positive step, three Froude numbers, and four discharges. The average statistical parameters of NRMSE, CRM, and R2 for estimating hydraulic jump characteristics with the ANFIS model were 0.059, -0.001, and 0.989, respectively. While, the mean values of these parameters for the ANFIS-PSO model were 0.185, 0.002, and 0.957, respectively. The results indicated that these models were capable of estimating hydraulic jump parameters with high accuracy. However, the ANFIS model was moderately more accurate than the ANFIS-PSO model to estimate the sequence depth ratio, the jump length, the roller length ratio, and relative energy loss.
N. Pourabdollah, M. Heidarpour, Jahangir Abedi-Koupai,
Volume 27, Issue 3 (Fall 2023)
Abstract
Hydraulic jump is used for dissipation of kinetic energy downstream of hydraulic structures such as spillways, chutes, and gates. In the present study, the experimental measurements and numerical simulation of the free hydraulic jump by applying Flow-3D software in six different conditions of adverse slope, roughness, and positive step were compared. It should be noted that two turbulence models including k-ε and RNG were used for numerical simulation. Based on the results, simulation accuracy using the RNG model was more than the k-ε model. The statistical indices of NRMSE, ME, NS, and R2 for comparing the water surface profile were obtained at 34.3, 0.0052, 0.995, and 983 for the application of the RNG model, respectively. Also, using the RNG model, the values of these indices for the velocity profile were obtained at 14.92, 0.127, 0.9982, and 962, respectively. In general, the error of the simulated water surface and velocity profile were obtained at 5.31 and 12.4 percent, respectively. Moreover, the maximum error of the numerical simulation results of D2/D1, Lj/D2, and Lr/D1 was ±12, ±12, and 16%, respectively. Therefore, the use of Flow-3D software with the application of the RNG turbulence model is recommended for numerical simulation of the hydraulic jump in different situations.
M. Eskandari, M. Heidarnejad, A. Egdernezhad,
Volume 27, Issue 3 (Fall 2023)
Abstract
The formation of vortices behind the gates of diversion dams is an operational challenge. Such vortices lead to vibration and corrosion in the gate, reducing the lifetime and raising the operational cost of the dam. This study investigated these vortices and their formation. It was found that the gate or cutoff wall was not the only explanation for the vortices; the closed side gates also contribute to vortex formation. Furthermore, an increase in the gate width reduced vorticity; the vortex size experienced a 200% reduction as the gate size increased by 200%. The cutoff wall diameter was another determinant. An increase in the cutoff wall diameter raised vorticity. The vortices increased by 50% as the wall diameter increased by 150%.
M. Dorfeshan, A.r. Masjedi, M. Heidarnejad, A. Bordbar,
Volume 27, Issue 3 (Fall 2023)
Abstract
Piano key overflows have a high discharge capacity. Proper design of these overflows requires sufficient accuracy in predicting the type of overflows. In this study, experiments were performed in a rectangular laboratory flume made of Plexiglas to investigate the effect of the relative length and width of the two-cycle piano switch overflow crest on the discharge coefficient. In present research, the flow intensity coefficient was investigated by installing a rectangular piano switch overflow with relative crest lengths of 0.8, 1, and 1.2 and relative crest widths of 0.2, 0.3, and 0.4 in 10 flow intensities in the channel. The results of this study showed that by increasing hydraulic load, the flow intensity coefficient first increases and then decreases. Also, by increasing the relative length of the crest by 50%, the current intensity coefficient increases by 43% in the overflow. Increasing the relative width of the overflow crest by 50% increases the current intensity coefficient by 25% in the overflows. Also, an equation was presented to determine the maximum relative scour depth, and the correlation coefficient of the results of this equation with the laboratory results is about 0.90.
M. Sehat, A. Bordbar, A.r. Masjedi, M. Heidarnejad,
Volume 27, Issue 4 (Winter 2023)
Abstract
Today, abutments disrupt the normal flow of rivers and cause scouring and erosion of sedimentary materials around them, creating holes and resulting in much damage every year. Researchers have proposed various methods to reduce the power of water erosion. One of the essential methods in this regard is creating slots in abutments. Since the expansion of the scour hole endangers the stability of the bridge structure, this study examined the effect of slot dimensions in the support on the scour hole dimensions. The findings demonstrated that the presence of slots in abutments effectively reduces the dimensions of scour holes. With the slot, the volume of the scour hole can be reduced by up to 50%. Furthermore, as the relative speed of scouring increases by 75%, the depth of the scour hole also increased up to 140%. An increase in slot depth leads to a decrease in scour hole depth of up to 85%.
M. Farzamnia, M. Akbari, M. Heidarisoltanabadi,
Volume 27, Issue 4 (Winter 2023)
Abstract
The agricultural sector depends largely upon water and energy resources to fulfill sufficient water for producing adequate food for the rapidly growing world’s population. It requires great effort to improve water and energy productivity for agricultural products to provide consumers’ health as well as environmental protection. In this study, the volume of irrigated water, crop yield, water productivity, and the consumed energy for onion crops irrigated with sprinkler or surface irrigation methods under farmer management were measured and compared. The measurements were recorded from 2020 to 2021, on 17 farms across Esfahan Province where onion was a main crop in the region. The measured data from the foregoing two irrigation methods were statistically analyzed using t-test and Pearson correlation coefficients. The outcomes revealed that the volume of irrigated water as well as crop yield was greater for surface irrigation method compared to sprinkler irrigation, and the differences were statistically significant. Moreover, water productivity for onions irrigated with a sprinkler irrigation system was significantly higher (p<0.01) in comparison with onions irrigated with the surface method. In addition, the results indicated a significantly direct correlation between the volume of irrigated water and onion yield, whereas a significantly indirect correlation was observed between the volume of irrigated water and water productivity. A significantly inverse correlation was found between the productivity of energy for irrigation and energy consumption; so, an increase in the energy for irrigation resulted in a decrease in energy productivity. Based on the results of this study, the sprinkler method is more effective than the surface for irrigation of onion.
R. Sargholi, A. Bordbar, A. Asareh, M. Heidarnejad,
Volume 28, Issue 1 (Spring 2024)
Abstract
In the past, various methods have been proposed to control beach heel scouring. For shallow rivers (such as mountain rivers), various types of overflows are used. Therefore, the development of scour in cross-vane and w-weir structures for coastal protection was investigated in this study. The results showed that by installing a w-weir structure in a 90-degree position compared to a 30 and 60-degree position, a 37.9% and 19.7% reduction of scouring was observed, respectively. Also, by installing the cross vane structure in the 90-degree position compared to the 30 and 60-degree position, a 35.4% and 21.2% reduction of scouring was observed, respectively. With increasing width (L / B) (ratio of the width of structure to the width of flume), the w-weir structure decreased from 1.5 to 2, scour rate of 7.9%. Also, with increasing width (L / B) (ratio of the width of structure to the width of flume), the cross-vane structure has decreased from 1.3 to 1.7, and the scour rate has decreased by 4.7%. The w-weir structure had an average of 7.3% less scouring than the cross-vane structure.
M. Heidarpour, Kimia Akhavan, N. Pourabdollah,
Volume 28, Issue 3 (Fall 2024)
Abstract
One of the ways to improve the characteristics of the hydraulic jump in the stilling basin is to use natural and artificial roughness. Recently, due to the advantages of immersed plates compared to other non-continuous artificial roughness, such as the smaller number of these and the vanes' ability to design their geometry and arrangement, it has been approached more. In this article, the effect of submerged vanes with three contact angles of 45°, 75°, and 90° has been investigated on the improvement of the characteristics of a hydraulic jump and its effect on parameters such as the depth ratio, relative length, energy loss rate, and bed shear force coefficient has been evaluated. The results of this research showed that the average effect of submerged vanes on reducing the depth ratio, jump length, and roller length compared to the classical mode is 9.4%, 24.6%, and 28.4%, respectively and the average relative energy loss is 5.5% compared to the classical state and maximum relative energy loss at the angle of 90 degrees of submerged vanes is 6.5%. Considering these results and other conditions such as ease of construction and use, stabilization, and reduction of economic costs among the available choices of sunken vanes, the angle of incidence of 75° is a suitable option for the optimal design of the stilling basin.