Search published articles


Showing 37 results for Moisture

P. Bagheri , S. M. A. Zomorodian,
Volume 17, Issue 63 (6-2013)
Abstract

Hydraulic conductivity is an important parameter in the design of geotechnical structures such as earth dam, floor construction, retaining walls and environmental structures. In unsaturated soils, hydraulic conductivity is a function of moisture content and soil water suction i.e. soil moisture characteristic curve. In this study, the values of unsaturated hydraulic conductivity in two soil types (Ramjerdi and Molasadra core dam series) at 5 different compactions using Gardner method were measured. Then, the unsaturated hydraulic conductivity was estimated by different models using the soil moisture characteristic curve and was compared with measured values. The results showed that Fredlund and Xing models predict the soil moisture characteristic curves more accurately compared with van Genuchten model. For Ramjerdi soil series and up to nearly 0.25 volumetric water content, (VGM) and (FM) models indicated a good estimation for unsaturated soil conductivity. Also, for Molasadra core dam none of the models resulted in acceptable estimations for unsaturated hydraulic conductivity.
M. Kiani, M. Gheysari, B. Mostafazadeh-Fard, M. M. Majidi and E. Landi, , , , ,
Volume 18, Issue 67 (6-2014)
Abstract

The purpose of this study was to measure daily and seasonal evapotranspiration and daily crop coefficient of two common varieties of sunflower (Sirna and Euroflor) via drip-tape irrigation system. For this purpose, the sunflower water use was determined by daily monitoring of soil moisture at the depths of 10, 20, 30, 40 and 60 cm, and the crop evapotranspiration (ETC) was measured using volume balance method. According to the equation recommended by FAO, the obtained value of KC for Euroflor and Sirna varieties at the initial stage was 0.32. According to volume balance method, the Euroflor KC value for development, middle, and late stages were found to be 0.75, 1.18 and 0.9 and for Sirna were found to be 0.72, 1.15 and 0.84 respectively. Seasonal amount of evapotranspiration for Euroflor and Sirna varieties was equal to 601 and 575 mm, which was 26 and 30 percent less than seasonal ET0 in Isfahan. The average value of during the sunflower growing season was 0.77, which was greater than that offered by Doorenbose and Pruitt (0.55). As the crop coefficients of two varieties were different during the growing season and they were also different from FAO KC, measuring the actual amount of KC as a function of growing degree days can increase the accuracy of the estimated ETc and help develop the crop models in order to improve the irrigation management.
M. Farzadian, S. Hojati, Gh. A. Sayyad , N. Enayatizamir,
Volume 19, Issue 72 (8-2015)
Abstract

One of the major problems associated with petroleum-contaminated soils is water repellency, especially in arid regions of the world. Hence, a variety of methods such as clay addition has been proposed to improve the hydrophobicity of soils. This research was conducted to evaluate the influence of zeolite application on water repellency of an oil-contaminated soil from Khuzestan Province under various treatments including initial soil moisture content (0, 10, 20, and 30 weight %), the amount of applied zeolite (2, 4 and 8 weight %), size (25-53 and <2 μm), and exchangeable cation (Sodium and Calcium). The hydrophobicity of soil sample was determined using Water Drop Penetration Time (WDPT) method. The results showed that by increasing the amount of applied mineral WDPT decreased, where the application of 2 percent of zeolite led to the reduction of WDPT by about 27 percent less than the control. The results also indicated that soils treated with sodium-saturated zeolite had less WDPT than the calcium-treated samples, where the average of WDPT in sodium and calcium treatments decreased by 23% and 5% compared with the control, respectively. The initial moisture content of 30 percent showed the best performance with the decreasing WDPT of about 67 percent. Furthermore, the effect of mineral particle sizes showed a meaningless reduction in WDPT.
T. Rahimi , S. H. Musavi Jahromi,
Volume 19, Issue 74 (1-2016)
Abstract

The importance of decreasing the cost of soil structures due to the budget constraints makes engineers avoid handling large volumes of soil, thus making maximum use of local materials. Soil performance change in order to improve engineering applications of soil is called soil stabilization. Soil stabilization methods can be mechanical, electrical, thermal, chemical, etc. Gypsiferous soil including soils used in civil affairs and special structures in the vicinity of water needs to be established. This study is conducted to evaluate changes of shear strength of gypsiferous soil, using chemical method by addition of “A polyurethane Mastic”.  The studied gypsiferous soil was prepared from 3km north-west of Ramhormoz in Khuzestan province. Soil samples containing 0%, 1%, 2%, 3%, 5% and 7% of the said material additive were compressed with optimum moisture content obtained from standard Procter test, and finally, were tested under the direct shear test at shear rate of 0.5 mm per minute. After achieving cohesion parameters of soil, the best mix of the additive “A polyurethane Mastic” was found to be 5%.


A. R. Vaezi, H. Hasanzadeh,
Volume 20, Issue 75 (5-2016)
Abstract

Knowledge of variation in soil properties from each event to another is very important for the determination of critical periods during which soil is susceptible to erosion processes. This study was carried out to investigate soil loss in sequential rainfall events in Zanjan Province. Toward this, ten soil textures samples were taken and were transported to small plots (60 cm×80cm) with 20-cm depth) on a 8% slope land at three replications. The plots were exposed to ten simulated rainfalls with an intensity of 55 mm h-1 for 30-min and 5-day intervals. A total of 300 simulated rainfall trials were carried out at the plots.  Results indicated that soil moisture, runoff production and soil loss were significantly affected by rainfall events (P< 0.001). Increasing soil moisture and consequently decreasing soil infiltration capacity were the most crucial element in increasing runoff production and soil loss in the sequential rainfall events, in a way that about 84% of soil loss variation in the rainfall events could be explained based on antecedent soil moisture. After the fifths rainfall event, no significant differences  was found in soil infiltration capacity as well as runoff production because of soil moisture reaching to the water-holding capacity. Nevertheless, an increasing trend was observed in soil loss after fifth event which could associate with presence of more erodible soil particles on the surface and consequently increasing the concentration of surface flows.


H. Adab,
Volume 21, Issue 2 (8-2017)
Abstract

A limited number of agricultural weather stations measure moisture in the soil surface. Furthermore, soil moisture information may be required in areas where there is no weather station. The aim of the present study was to use Landsat 8 satellite images to estimate soil surface moisture in an area without agricultural meteorological stations. Gravimetric soil moisture for a total of 14 samples was calculated in the cold season in depths of 0-10 cm when Landsat 8 satellite was overpassing poor rangeland of North of Sabzevar. Furthermore, the first four principal components were extracted from seven Landsat-derived vegetation indices and bio-physical factors affecting soil moisture. Afterwards, the first four components were used to estimate soil surface moisture at the moment of the satellite passing the region using a multivariate linear regression and neural networks. The obtained results of instantaneous soil surface moisture showed that the neural networks had mean absolute percentage error of while classical regression analysis had mean absolute percentage error of 40%. The results also showed the benefits of using both in-situ soil moisture data and Landsat 8 satellite images to model instantaneous soil surface moisture content for areas lacking meteorological networks.
 


A Fararooei, M. Noshadi, S. Amin Sichani,
Volume 22, Issue 1 (6-2018)
Abstract

PCBs are persistent organic pollutants which, due to high environmental hazards, must be traced, determined, and decomposed to reduce their risks. . To detect this material in the soil, the method of extraction and appropriate measuring conditions should be investigated. Two soil samples with two kg weight were selected with two different soil textures and the solutions of soil were made with the 1000 µg/ml aroclor 1254 mixture in a GC device. . Agilent GC-MS with stationary phase (CP 7477) was used to measure aroclor 1254. The analysis of variance and the test of the extraction mean of aroclor 1254 were compared in two soil textures. The results suggested that coarse texture soil (sandy loam) had a higher extract than the fine one (silty loam). The difference was statistically significant (P< 0.01). These findings suggested that the soil texture affected the extraction of aroclor from soil. In addition, four different levels of moisture (5%, 10%, 15% and 20%) produced in two soil textures and aroclor were measured. The highest level of extraction was obtained at 20% moisture, which was significantly higher than that in other levels (P< 0.01). The difference between the mean of extractions in the soil samples with 10% and 15% levels of moisture was non-significant (P> 0.05).

R. Darabi Kandlaji, Shahin Oustan, Nasser Aliasgharzad, N. Najafi,
Volume 22, Issue 3 (11-2018)
Abstract

Nitrification is one of the most active biological processes in the soils receiving ammonium nitrogen. The rate of this process is under the influence of several factors and their interactions. In this study, the effects of ammonium concentration and moisture content on the extent of nitrification in two soil samples named A (Loam) and B (Clay loam), which had been taken, respectively, from Marand and Ahar areas, were investigated. A two-week factorial incubation experiment (25±0.5°C) was conducted in a completely randomized design with three replications. Factors were urea nitrogen at five levels (0, 50, 100, 200 and 400 mg N kg-1), moisture content at three levels (0.55FC-0.60FC, 0.75FC-0.80FC and 0.95FC-FC) and two soil types (A and B). At the end of the experiment, concentrations of ammonium and nitrate as well as the values of pH and EC were determined. Based on the results, average nitrification at 0.55FC-0.60FC was 22 percent lower than that at 0.95FC-FC and no significant difference was observed between 0.75FC-0.80FC and 0.95FC-FC. Nitrification at the treatment of 400 mg N kg-1and 0.55FC-0.60FC was decreased considerably and 25 percent of the added ammonium was accumulated. The average ammonium concentrations did not significantly vary among the levels of 50, 100 and 200 mg N kg-1, but these concentrations were significantly lower than those of 400 mg N kg-1. Moreover, EC and pH values of the soils were significantly increased and decreased in response to the nitrification (0.54 dS m-1 and 0.59 at the application level of 200 mg N kg-1, respectively). On average, the results showed higher nitrification (40.3 mg N kg-1) in the soil A (Loam texture) than the soil B (Clay loam).

M. Najafi-Ghiri, Y. Kiassi, F. Khademi, A. R. Mahmoodi, H. R. Boostani, Dr M. Mokarram, M. J. Gholami,
Volume 22, Issue 3 (11-2018)
Abstract

Little information is available regarding the effect of road on the adjacent vegetation and soil. The current investigation was done to study the effect of Darab-Bandar Abbas road on vegetation, soil properties and nutrient availability of the adjacent soils. For this purpose, eighteen soil samples in three different regions from the roadside and the adjacent land (50m from the road edge) were collected and the vegetation type and density were determined. Soil properties and the availability of N, P, K, Fe, Mn, Zn and Cu were also determined. Roadside soil had more organic matter and sand contents and less clay content and pH in comparison to the adjacent lands. The mean contents of N, Fe, Zn and Cu available in the roadside soils were 0.13%, 4.2, 3.2 and 0.7 mg kg-1, respectively; these were significantly more than those of the adjacent lands (0.06%, 2.8, 0.6 and 0.3 mg kg-1, respectively). Vegetation of roadside was more varied, consisting of Artemisia sieberi and Astragalus fasciculifolius. Vegetation cover in the roadside (13.8%) was significantly more than that of the adjacent lands (8.5%). Generally, it could be concluded that roadside soils had a suitable moisture condition and fertility for the vegetation development and this could be considered in the soil conservation management of the roadside soils.

Z. Amiri, M. Gheysari, M. R. Mosaddeghi, M. S. Tabatabaei, M. Moradiannezhad,
Volume 23, Issue 2 (9-2019)
Abstract

Location of soil moisture sampling in irrigation management is of special importance due to the spatial variability of soil hydraulic characteristics and the development of root system. The objective of this study was determination of the suitable location for soil moisture sampling in drip-tape irrigation management, which is representative of the average moisture in the soil profile (θavg) as well. For this purpose, soil moisture distribution (θij) at the tassel stage of maize and one irrigation interval (68-73 day after plant) were measured at the end of season. The results showed more than 70% length of the root of plant was located in 30 cm of the soil depth. By accepting ±10% error in relation to the averaged soil moisture, some region of soil profile was determined which was in the acceptable error range and also near the averaged soil moisture (0.9θavgRec<1.1θavg). By overlapping θRec in one irrigation interval, the appropriate location for soil moisture sampling was the horizontal distance from drip-tape line to 20 cm and the depth of 10-20 cm from the soil surface. To determine the appropriate place for soil moisture sampling, the development of root system and the maximum concentrated root length density in the soil profile extracting the maximal soil moisture should be taken in to account, parallel with the averaged soil moisture.

R Ghazavi, E. Omidvar, H. Jeyhoni,
Volume 23, Issue 3 (12-2019)
Abstract

One of the important elements in mechanized irrigation is to know the relation between suction force (matric force) and soil moisture, which is referred to as moisture curve. The shape and coefficients of this curve are influenced by the texture and structure of the soil and can change with soil structure modification.  The most important goals of this study were to evaluate the effect of using zeolite on water holding capacity and coefficients of moisture curve patterns of two sandy and loamy soil texture, the effect of using zeolite on the shape and soil moisture curve coefficients based on various models, some of them so far in Iran, zeolite was added to soils at levels of consumption (2, 5 and 10%). The moisture content of each soil was determined at various points in 12 points using a Dicagon machine.  Soil moisture curve coefficients using software and fittings of six Brooks and Corey models, Kosugi, Durner, Fredlund and Xing,  VanGenuchten and Seki. The results indicate that in all models, the parameter value increases with the use of zeolite and increase the level of use. Water storage capacity also increases with the use of zeolite.  Other results showed that the best model for estimating the moisture curve of laryngeal and sandy soils of the Darren model is weakest and the weakest models in the lush soils of the broccoli model and Kasughi model and in the sandy soil of the Brooksouli model Blindness and model-gnuchten Shand.

N. Karimi, L. Gholami, A. Kavian,
Volume 23, Issue 3 (12-2019)
Abstract

The using of soil conditioners to water and soil conservation is essential and also, the effect study of soil moisture on the soil conservation process and its role on changing runoff, soil erosion and sediment yield is necessary for understanding and simulating the hydrologic response of soil. Therefore, the present study was carried with the aim of investigating the effect of biochar with amount of 1.6 t ha-1 on the components of  time to runoff, runoff volume, runoff coefficient, soil loss and sediment concentration in different soil moisture including air-dried, 15, 20 and 30 percent with three replications in plot scale. The results showed that after application of biochar conditioner, time to runoff compared with control treatment at soil moistures of air-dried of 15, 20 and 30 percent happened later 66.66, 186.6, 150.5, and 475.47 respectively. The results also showed that the runoff volume at soil moistures of air-dried of 15, 20 and 30 percent decreased 44.49, 55.65, 36.47 and 41.08 percent, respectively, and the runoff coefficient reduced 55.71, 66.39, 48.44 and 37.82 percent, respectively. The adding biochar caused the decreasing soil loss with rates of 91.19, 85.055, 85.63 and 88.066 percent, respectively, and the sediment concentration with amounts of 84.19, 66.53, 76.57 and 79.59 percent, respectively. Also the results showed that the changes of soil moisture had the significant effect on changing the time to runoff, runoff volume, and soil loss and sediment concentration in level of 99 percent.

F. Hadian, R. Jafari, H. Bashari, M. Tarkesh,
Volume 23, Issue 4 (12-2019)
Abstract

Soil moisture is one of the most important factors that can affect productivity in ecosystems in arid and semiarid regions. The aim of this study was to investigate soil moisture and vegetation changes in the Isfahan province at the seasonal scale. For this purpose, MODIS Land Surface Temperature (LST) and NDVI data were used to calculate the TVDI index, and the rate of soil moisture content was also measured at several soil depths including 5, 10, 20, 30 cm. in the growing season. Seasonal changes of LST and NDVI indices were also studied in different climate regions ranging from humid to hyperarid. The results showed that the changes in NDVI and LST in this region were different, depending on the climate type and soil conditions; the LST and its changes mostly depended on the amount of vegetation cover NDVI changes based on the plant phenology in humid regions, which was were greater than that in arid and semi-arid climates. Soil moisture monitoring indicated that the relationships between TDVI and different soil depths varied based on the seasonal conditions. In the early growing season, the soil moisture at the depth of 0-5 cm had a higher correlation with TVDI, but in the middle of growing season, the deeper soil moisture (10-30 cm) showed the highest correlation. Therefore, the findings of this research indicated the importance of the growing season, soil conditions and vegetation percentage and types in the soil moisture studies by using satellite data.

M. Arabfard, A. Shahnazari, M. Ziatabar,
Volume 23, Issue 4 (2-2020)
Abstract

Localized irrigation methods can be used to manage low water holding capacity in the sandy soils. In this research, the effects of different irrigation systems including pot, tape and drip irrigation with gravity pressures of 0.5, 1.5 and 3 meters on the sandy soil moisture distribution under watermelon cultivation were compared with the furrow irrigation as the control treatment. The moisture content of the soil at different depths and at the distance of 5 and 20 cm from the plant was measured using the TDR device. Water distribution study showed that in the pot irrigation method, the moisture content of different depths of soil was kept constant by 16% during the irrigation interval, but the highest moisture content was observed in gravitional drip irrigation treatment at the depths of 40, 50 and 60 cm; in contrast, the lowest amount of moisture was observed in the pot irrigation treatment. In tape and gravitional drip irrigation system with gravity pressure, in addition to the adjustment soil moisture up to 15 to 22% within the wetting front, soil moisture can be kept almost constant by pulsed irrigation technique. Therefore, while providing the use of drip irrigation system with minimum water pressure available in most of the agricultural land (0.5 m), using pot irrigation can ensure sandy soil moisture retention and soil for the cultivation of fruits such as watermelon plants.

B. Torabi Farsani, M. Afyuni,
Volume 25, Issue 1 (5-2021)
Abstract

Compost leachate is a liquid resulting from physical, chemical and biological decomposition of organic materials. The main objective of this study was to evaluate the influence of leachate compost on the physical, hydraulic and soil moisture characteristic curves. Also, the effect of leachate on the aerial organ fresh weight of corn was investigated. Leachate was added to clay loam and sandy clay loam soils at the rate of zero, 1.25 and 2.5 weight percent. The soil water characteristic curve and the estimation of the parameters of the van Gnuchten and Brooks and Corey models were performed using RETC software. Leachate increased the bulk density and decreased the available water of the clay loam soil. Only 1.25% of the leachate increased the available water in the sandy clay loam soil. Two levels of leachate decreased the bulk density of sandy clay loam soil. Leachate decreased the saturation hydraulic conductivity of the clay loam and increased this parameter of sandy clay loam soil. Leachate was more successful in increasing the aerial organ fresh weight of corn in the sandy clay loam soil. Therefore, leachate was more useful in sandy clay loam than in clay loam soil, and 1.25% treatment was better in the sandy clay loam soil. Also, the used leachate increased the repellency of both soils. Leachate caused the parameters of van Gnuchten and Brooks and Corey models to increase, as compared to the control in both soils.  

F. Saniesales, S. Soltani, R. Modarres,
Volume 25, Issue 2 (9-2021)
Abstract

Several indices are used for drought identification and quantification. In this paper, the new Standardized Palmer Drought index (SPDI) was introduced and then the drought condition of Chaharmahal-Va-Bakhtiari Province was studied using this index. For this study, 11 synoptic, climatology, and evaporation meteorology stations were selected. Essential information in this investigation includes monthly temperature, monthly precipitation, and soil moisture measurement. To estimate SPDI, moisture departure, was first calculated on a monthly time scale. Then, converted to cumulative moisture departure values in different time scales including 3, 6, 9, 12, and 24 months. The best statistical distribution (GEV) was then fitted to cumulative departure. These values were then standardized to have the SPDI. The results showed that, as soil moisture affects SPDI estimation, it will be more valid for analyzing and monitoring drought conditions, especially for agricultural drought. Also, the results showed that 2000, 2001, and 2008 years were the driest time in this Province from 1988 to 2012. Moreover, drought frequency was found out in the western half of the Province more than in the other parts.

A. Vaezi, E. Zarrinabadi, Y. Salehi,
Volume 25, Issue 3 (12-2021)
Abstract

The effective use of rainwater is a key issue in agricultural development in arid and semi-arid regions. The tillage system as an important soil management measure can affect the rainwater retention, soil moisture content, and in consequence crop yield in rainfed lands. This study was conducted to evaluate the effects of slope gradient and tillage direction on rainwater use efficiency (RWUE) in rainfed lands in Zanjan Province. The field experiment was performed in five slope gradients (12.6, 15.3, 17, 19.4, and 22%) and two tillage directions (along slope and on contour tillage) at two replications. Mass soil water content was determined at 5-day intervals and runoff was measured after rainfalls. Wheat grain yield was determined for each plot and RWUE was computed using the proportion of wheat grain yield and precipitation. Base on the results, runoff, soil moisture, wheat grain yield, and RWUE were affected by tillage directions, so that runoff in contour line tillage decreased about 6.4 times compared to along slope tillage and in consequence increased soil moisture, wheat grain yield, and RWUE about 8.7, 24.8, and 24.8%, respectively. Increasing runoff production in contour line tillage at steeper slopes was associated with a lower capacity of cultivated furrows that strongly declined soil water retention and negatively affected wheat grain yield and RWUE in the lands. This study revealed that the efficiency of the contour tillage in water retention and RWUE decreases in steeper slopes in rainfed lands.

L. Gholami, A. Khaledi Darvisan, N. Karimi,
Volume 25, Issue 3 (12-2021)
Abstract

Soil loss can cause many intra-regional and extra-regional problems, on the other hand, the effect of soil moisture on processes of soil loss and sediment yield for the identification and simulation of soil hydrological response is necessary. Therefore, the application of soil conditioners is essential for soil and water conservation. The present study was conducted to investigate the effect of soil conditioners of vermicompost and nano-manure on variables of soil loss and sediment concentration at moistures of air-dried, 15 and 30%, and rainfall intensities of 50 and 90 mm h-1. The obtained results in addition to confirmation of the significant effect of each conservation treatment at the level of 99 percent on the intended components showed that the conservation treatment of vermicompost compared to nano-manure treatment had more effect on measured variables. Also, the conservation treatment of vermicompost could decrease the soil loss at soil moisture air-dried, 15, and 30 percent with rates of 72.15, 66.63, and 78.76 percent (50 mm h-1), respectively, and 45.01, 35.57, and 10.45 percent (of 90 mm h-1), respectively. The effect of conservation treatments, soil moistures, and rainfall intensity and the interaction effects of conservation treatments × rainfall intensity and rainfall intensity × soil moisture on changes of soil loss and sediment concentration were significant at the level of 99 percent. The application of vermicompost and nano-manure had acceptable results on studied parameters but the vermicompost effect was more than nano-manure. Therefore, due to the widespread use of different types of conditioners, nowadays, it is needed to move the application feasibility of conditioners such as vermicompost and nano-manure that these have not the adverse effects of environmental.

R. Jafari, H. Sanati,
Volume 25, Issue 3 (12-2021)
Abstract

The southern regions of Kerman Province have repeatedly encountered dust storms. Therefore, the objective of this study was to identify dust sources using effective parameters such as vegetation cover, land surface temperature, soil moisture, soil texture, and slope as well as to detect dust storms originating from these regions based on 31 MODIS images in 2016 and SRTM data. After normalizing parameters, the dust source map was prepared by fuzzy logic and assessed with an error matrix and available dust source map. Results showed that 30.5% of the study area was classified as a low source of dust, 39.55% as moderate, and 29.85% as severe-very severe. The overall accuracy of the produced map was about 70% and the producer and user accuracy of the severe-very severe class was more than 87%. The detection of dust storms originated from the identified dust sources also confirmed a crisis situation in the region. Due to the repeatability and continuity of obtained dust source map at pixel scale, it can be used to update available dust source maps and manage dust crisis in the region, properly.

A.r. Vaezi, S. Rezaeipour, M. Babaakbari, F. Azarifam,
Volume 27, Issue 3 (12-2023)
Abstract

Improving soil physical properties and increasing water retention in the soil are management strategies in soil and water conservation and enhancing crop yield in rainfed lands. This study was conducted to investigate the role of tillage direction and wheat stubble mulch level in improving soil physical properties in rainfed land in Zanjan province. A field experiment was done at two tillage directions: up to the downslope and contour line, and five stubble mulch levels: zero, 25, 50, 75, and 100% of land cover equal to 6 tons per hectare. A total of 30 plots (2 m×5 m) were created. The results indicated that water infiltration and water content were considerably affected by tillage direction, whereas its effect on water holding capacity was not significant. This physical property of the soil was influenced by the inherent properties of the soil, including particle size distribution. The change of up to down tillage direction to the contour line increased soil infiltration to 11% and water content to 6%. The physical soil properties were wholly influenced by mulch consumption. Soil water content increased in mulch treatments along with water holding capacity and infiltration rate. The highest volumetric water content was at 100% mulch level (10.62%) which was 11% more than the control treatment. However, there was no significant difference between 100% and 75% mulch treatment. This revealed that the application of 75% stubble mulch in contouring tillage is a substantial strategy for improving soil physical properties and controlling water loss in rainfed lands of semi-arid regions.


Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb