Search published articles


Showing 64 results for Regression

S. Ayoubi Ayoublu, M. Vafakhah, H.r. Pourghasemi,
Volume 26, Issue 3 (12-2022)
Abstract

Population growth, urbanization, and land use change have increased disastrous floods. Iran is also among the countries at high risk of floods. The latest examples of flood damage are the devastating floods of the spring of 2019 with significant mortality and financial losses in more than ten provinces of the country. The purpose of this study is to prepare an urban flood risk map of District 4 City Shiraz. The vulnerability of the region was made using PROMETHEE Ⅱ and COPRAS multi-criteria decision-making models and urban flood hazard zones were prepared by partial least squares regression (PLSR) and ridge regression (RR) models and a risk map was obtained by multiplying the vulnerability and hazard in ArcGIS software. The highest percentage of the study area in the PROMETHEE Ⅱ and COPRAS models belongs to the moderate class of vulnerability. The evaluation of the vulnerability models using Boolean logic and RMSE and MAPE statistics, showed that the COPRAS model provided better results than the PROMETHEE model. The results of partial least square regression (PLSR) and ridge regression (RR) models in flood risk modeling were analyzed by the Taylor diagram, which showed the superiority of the ridge regression (RR) model and the accuracy of this model in preparing urban flood hazard maps. The risk map of the study area indicated that 34% of the area (973 ha) is in the range of high and very high flood risk.

N. Salamati, M. Moayeri, F. Abbasi,
Volume 27, Issue 2 (9-2023)
Abstract

The objective of the present study was to conduct field studies for direct measurement of canola under farmers' management in one crop season (2019-2020) in 27 farms in Behbahan, Khuzestan province. Water requirement was calculated based on the FAO Penman-Monteith model using the daily statistics of the Behbahan synoptic meteorological station. A T-test was used to statistically compare the results such as the depth of irrigation and applied water productivity in the field in different irrigation systems. Linear multivariate regression analysis was used to investigate the effects of the independent variable on the dependent parameter of water productivity. The volume of applied water in the fields ranged from 4085.5 to 7865.3 m3/ha. The results of comparing the average yield of two irrigation systems in the t-test showed that the two sprinkler and surface irrigation systems with yields of 2614 and 2330 kg/ha, respectively, were not significantly different. Applied water productivity in traditional and modern irrigation systems was calculated to be 0.386 and 0.486 kg/m3, respectively, which had significant differences. The results of the analysis of variance in the regression model showed that among the independent variables, yield with t-statistic (23.997) and equivalent beta coefficient (0.880) had the most significant positive effect at a 1% level on applied water productivity. After that, the volume of applied water (irrigation water + effective rainfall) with a t-statistic of (-11.702) and a beta coefficient of equivalent (-0.793) had the most negative and significant effect at the level of 1% on the applied water productivity. The results of the Pearson correlation coefficient showed that irrigation events had a positive and significant correlation at a 5% level with applied water and yield. These correlations were 0.455 and 0.380, respectively. By increasing irrigation events, the volume of applied water has practically decreased and has become as close as the plant needs, and has increased water productivity.

S. Jalali, K. Nosrati, Z. Fathi,
Volume 27, Issue 2 (9-2023)
Abstract

The geomorphic characteristics of the watersheds are interrelated and the temporal and spatial scale in the form of season and sub-basins affect the concentration of suspended sediment. One of the objectives of this study was to investigate the relationship between suspended sediment concentration and watershed characteristics of Kan River using principal components regression and to recognize the effect of seasons and sub-basins on sediment concentration. The concentration of suspended sediment during four rainfall-runoff events in three seasons and in sub-basins was measured and calculated. The sixteen physiographic and land use characteristics were determined in the sub-basins and the main factors were identified and the scores of each factor for each feature were calculated using principal component analysis (PCA). The results of variance analysis showed that the concentration of suspended sediment was significant in terms of time scale and spring had the highest rate of sedimentation. Redundancy analysis and canonical analysis on the properties that participate in the first factor (PC1) showed the characteristics of the percentage of erodible formation, relatively erodible formation, and percentage of free construction activity, respectively. Road (slope leveling) and stream length are the most essential attributes of sub-basins in the production and concentration of suspended sediment in the study area.

Miss S. Bandak, A.r. Movhedei Naeani, Ch.b. Komaki, M. Kakooei, J. Verrlest,
Volume 27, Issue 3 (12-2023)
Abstract

Soil organic carbon (SOC) is one of the most important components of soil physical and chemical properties that have an important role in sustainable production in agriculture and preventing soil degradation and erosion. Data mining approaches and spatial modeling besides machine learning techniques to investigate the amount of soil organic carbon using remote sensing data have been widely considered. The objective of the present study was the evaluation of SOC using the remote sensing technique compared with field methods in some areas of the Gonbad Kavous and Neli forests of Azadshar. The soil samples were collected from the soil surface (0-10 cm depth) to estimate the SOC. Data were categorized into two categories: 70% for training and 30% for validation. Three machine learning algorithms including Random forest (RF), support vector machine, extra tree decision, and XGBoost were used to prepare the organic soil carbon map. In the present study, auxiliary variables for predicting SOC included bands related to Lands 8 OLI and sentinel 2 measurement images, topography, and climate. The results showed that the extraction of the components related to the bands along with the calculation of indicators such as normalized vegetation difference, wetness index, and the MrVBF index as auxiliary variables play an important role in more correct estimation of the amount of soil organic matter. Comparison of different estimation regressions showed that the Sentinel 2 random forest model and in Landsat8 with the values of coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MEA) of 0.64, 0.05, and 0.17, respectively, was the best performance ratio compared to other approaches used in the study to estimate the organic carbon content of surface soil in the study area. In general, the results of this study indicated the ability of remote sensing techniques and learning models in the spatial estimation of soil organic carbon. So, this method can be used as an alternative to laboratory methods in determining soil organic carbon.


Page 4 from 4     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb