Search published articles


Showing 51 results for Temperature

A.r Modares Nia, M. Mirmohamad Sadeghi, A. Jalalian,
Volume 25, Issue 4 (3-2022)
Abstract

Desertification has become one of the main problems of human societies living in the vicinity of desert areas in recent years. One of the methods that have been considered in recent years and are rapidly expanding in the field of soil mechanics is the Microbial Induced Carbonate Precipitation (MICP). In this method, urea-positive organisms that are naturally present in the soil can stabilize the soil and improve its engineering parameters by using urea and calcium chloride. Recently, attempts have been made to use this method to create a crustal layer on the soil to prevent wind erosion. In the present study, the effect of environmental conditions in deserts such as temperature and sand bombardment on microbial soil treatment has been investigated using this new method. The soil of the Segzi region as one of the main centers of dust in the Isfahan region was studied in this research. Therefore, the improved samples are subjected to regional temperatures which increased the surface layer resistance with increasing temperature. Also, the sandstorm conditions of the region were simulated using three different grain sizes of sand inside the wind tunnel. The results of these experiments showed that stabilized soil could withstand the conditions at wind speeds of 7 and 11 m/s. However, by increasing the wind speed to 14 m/s and the grain size, the crustal layer destroys and increases the wind erosion of the soil. Also, the resistance of the surface layer increased by increasing temperature in the tested samples. This increase in resistance continued up to 24 degrees with a high slope, but from 24 degrees onwards, this slope decreases. Based on the results of this research, it can be said that the microbial improvement method can be used as an alternative method in the future to stabilize desert soils.

N. Azadi, F. Raiesi,
Volume 26, Issue 1 (5-2022)
Abstract

Biochar as an efficient strategy for the improvement of soil properties and organic waste management may reduce the potential effects of abiotic stresses and increase soil fertility. However, the effects of this organic amendment on soil microbial indicators under combined salinity and pollution have not been studied yet. Therefore, the objective of this study was to evaluate the influence of sugarcane bagasse biochar on some soil bioindicators in a Cd-polluted soil under saline and non-saline conditions. A factorial experiment was carried out with two factors, including NaCl salinity (control, 20 and 40 mM NaCl) and sugarcane bagasse biochar (soils unamended with biochar, amended with uncharred bagasse, 400 oC biochar, and 600 oC) at 1% (w/w) using a completely randomized design. Results showed that salinity increased the mobility of Cd (12-17%), and subsequently augmented its toxicity to soil microorganisms as indicated by significant decreases in the abundance and activities of the soil microbial community. Conversely, sugarcane bagasse biochar application reduced the concentration of soil available Cd (14-18%), increased the contents of soil organic carbon (89-127%), and dissolved organic carbon (4-70%), and consequently alleviated the effect of both abiotic stresses on soil microbial community and enzyme activity. In conclusion, this experiment demonstrated that the application of sugarcane bagasse biochar could reduce the salinity-induced increases in available Cd and mitigate the interaction between salinity and Cd pollution on the measured soil bioindicators.

F. Khafi, A.r. Hossienpour, H. Motaghian,
Volume 26, Issue 2 (9-2022)
Abstract

One of the significant factors affecting biochar properties is the pyrolysis temperature. This study aimed to investigate the effect of pyrolysis temperature on the properties and fractionation of Zn and Pb in biochars produced by sewage sludge. Biochars were prepared at temperatures of 300 to 700 °C and the physicochemical properties, availability, and fractionation of Zn and Pb were investigated. The results showed that pH, pHzpc, percentage of calcium carbonate, cation exchange capacity, specific surface area, and porosity in biochars were higher than in the feedstock. By increasing biochar production temperature, the mentioned properties increased. FT-IR revealed that the OH functional group is present in free form, either in the structure of C-OH and -COOH and aliphatic-CH2 groups in the sewage sludge. By converting sewage sludge to biochar, the intensity of these peaks decreased. In contrast, peaks representing complex aromatic structures appeared. The availability of Zn and Pb in biochar was reduced as compared to sewage sludge. The results of fractionation indicated that sewage sludge has bio-availability and toxicity of Pb and Zn. the amount of oxide and residual fractions of these two metals increased by converting sewage sludge to biochar at different temperatures. Therefore, it seems that biochar production from sewage sludge reduces the toxicity and bio-availability of Zn and Pb. Also, by incrementing the temperature of production, the bio-availability potential (bonding with organic matter), and non-toxicity (residual) of these metals increased.

M. Abdi, H. Sharifan, H. Jafari, Kh. Ghorbani,
Volume 26, Issue 2 (9-2022)
Abstract

The irrigation schedule of crops is the most effective way to increase agricultural water use efficiency. In irrigation planning, determining the irrigation time is more important and difficult than determining the depth of irrigation water. Among all methods of determining the irrigation time of crops, the methods which used plants are more accurate than other methods. In this study, the wheat water stress index has been used which is based on the air vapor pressure deficit and the difference between vegetation and air temperature (Tc-Ta). First of all, the diagram and the relationship between the top and bottom baselines were extracted, then the water stress index of wheat was drawn in the Karaj region. Secondly, to determine the optimal water stress index of wheat, four treatments including I1: 30% of maximum allowable depletion of moisture, I2: 45% of maximum allowable depletion of moisture, I3: 60% of maximum allowable depletion of moisture, I4: 75% of maximum allowable depletion of moisture were performed in four replications. The amount of water stress index of each treatment was calculated during the season separately, and the CWSI of the treatment with the highest water use efficiency was used to determine the irrigation time of wheat. The results showed that the relationship between the upper and lower baseline for wheat in the Karaj region is Tc-Ta = 3.6 0c and 
Tc-Ta = -0.27VPD - 2.64, respectively. The treatment of 45% of maximum allowable depletion of moisture had the highest water use efficiency and the optimal water stress index for wheat was obtained at 0.36 in the Karaj region.

M.r. Bahadori, F. Razzaghi, A.r. Sepaskhah,
Volume 26, Issue 3 (12-2022)
Abstract

Inefficient use of limited water resources, along with increasing population and increasing water demand for food production has severely threatened agricultural water resources. One way to overcome this problem is to improve water productivity by introducing new crops that tolerate water stresses such as quinoa. In this study, the effect of water stress at different stages of plant growth (vegetative, flowering, and grain filling) was studied on plant parameters, yield, and water productivity of quinoa (cv. Titicaca). This study was conducted under field conditions and the treatments were performed as a block experiment in a completely randomized design with four replications. Experimental factors were: treatment without water stress or full irrigation (F) and water stress treatment (D) at 50% of the need for full irrigation at different stages of quinoa growth. The application of deficit irrigation during different stages of plant growth decreased stomatal conductance, leaf area index, leaf water potential, seed yield, and water productivity, while deficit irrigation increased the green canopy temperature. According to the results of the present study, the flowering stage of quinoa was very sensitive to water stress leading to produce lower yield compared with the amount of yield obtained when vegetative and or grain filling stages are under water stress conditions.

F. Fathian, M. Ghadami, Z. Dehghan,
Volume 26, Issue 4 (3-2023)
Abstract

In this research, the trend of spatial changes in extreme indices of temperature related to the health and agriculture sectors such as the number of frost days, number of summer days, number of icing days, number of tropical nights, growing season length, diurnal temperature range, cold spell duration index, and warm spell duration index were investigated for 54 synoptic stations throughout Iran for observational (1976-2005) and future (2025-2054) periods. Daily maximum and minimum temperature data of three regional climate models namely, CCSM4, MPI-ESM-MR, and NORESM1-ME from the CORDEX project under RCP4.5 and RCP8.5 scenarios were downscaled for each station using a developed multiscale bias correction method. Then, trends and changes of extreme temperature indices were investigated using Mann-Kendall and Sen’s trend line slope methods. The results indicated that the warm indices such as the number of summer days and tropical nights indices have had a positive trend at most stations in both observational and future periods. In contrast, cold indices like the number of frost days have had a decreasing trend in most stations. The results of cold and warm spell duration indices showed that most stations have had no trend for both periods. The growing season length has increased in more than 60% of stations (45% having a significant trend) mainly located in the northern, northwestern, and western regions of the country. Based on the results, it can be concluded that without considering thoughtful climate adaptation measures, some parts of the country may face health risks and limited habitability and agriculture in the future.

H. Jafari,
Volume 27, Issue 2 (9-2023)
Abstract

The ability of remote sensing (RS) in irrigation scheduling has been accepted in the world due to the collection of data on a large scale and the determination of water stress indicators with greater speed and less cost. Crop Water Stress Index (CWSI) and Water Deficit Index (WDI) are components of the most recognized water stress indices. Despite the accuracy and precision of the CWSI index that has been proven in plant irrigation scheduling, the lack of complete density of vegetation, especially in the early stages of growth, is one of the most important defects of using this method in crop irrigation scheduling. While estimating the water deficit index using remote sensing technology does not have these limitations. An experiment was performed in the crop year 98-99 in the city of Karaj to check the accuracy of this index. The amount of WDI and CWSI in a wheat field with optimized irrigation management was determined and compared and evaluated using statistical parameters. The results showed that the coefficient of explanation between these two indicators in the months of April, May, and June is 0.77, 0.85, and 0.71, respectively.

S. Najmi, M. Navabian, M. Esmaeili Varaki,
Volume 27, Issue 3 (12-2023)
Abstract

The increasing need for water resources and controlling the discharge of wastewater into the environment shows the necessity of wastewater treatment. Green methods such as constructed wetlands and phytoremediation use biological processes in the environment for wastewater treatment. Considering the effect of cultivated constructed wetland performance from wastewater quality and climatic factors, the objective of this study was to evaluate the performance of hybrid and subsurface vertical and horizontal wetlands to improve the biological and chemical oxygen demand of the wastewater treatment plant in Rasht City. The effect of Phragmites australis and Typha latifolia plants on the treatment performance was investigated. Wastewater retention time in wetlands varies from monthly in winter and weekly in spring and summer. The results showed that the performance of wetlands in reducing biological oxygen demand (BOD) was more than chemical oxygen demand (COD). Plants improved the performance of the wetland by more than 50%, but no significant difference was observed between the performances of the two plants. The arrangement of the plant's cultivation was not effective in the amount of biological and chemical oxygen removal. The hybrid wetland was able to improve the wastewater quality twice as much as the vertical wetland. Comparing the concentration of the effluents from the wetlands with the standards showed that the effluents from the hybrid wetlands could only be used for agricultural consumption.

R. Hosseinpour, H.r. Asgari, H. Nikanhad Qermakher, E. Malekzadeh, M.k. Kianian,
Volume 27, Issue 4 (12-2023)
Abstract

The soils of desert areas are mostly low in organic matter and may fluctuate greatly in terms of acidity. Biochars are one of the materials used to improve and modify some soil characteristics. This compound is very resistant to decomposition and remains in the soil for a longer period, reducing agricultural waste and turning it into a soil conditioner. This leads to keeping carbon in the soil, increasing food security, increasing biodiversity, and reducing deforestation. In this research, an attempt was made to investigate the biochar of fodder beet plant waste produced at different pyrolysis temperatures and its physical and chemical characteristics. For this purpose, fodder beet wastes were collected from settlements around Birjand and after being crushed and air-dried, they were pyrolyzed in an electric furnace under limited oxygen conditions at a temperature range of 300-700 degrees Celsius. Then, the characteristics of the produced biochars were performed with 3 repetitions of measurements and statistical analyses with SPSS software. The results of this research showed that the characteristics of biochars changed significantly with temperature change. The highest yield percentage (59%), organic carbon (56.33%), total nitrogen (0.53%), water retention (0.84g/g) at 300 and 400 degrees Celsius, and the highest amount of ash (% 76), acidity (8.21) and electrical conductivity (0.1ds/cm) was obtained at a temperature of 700 degrees Celsius. The percentage of carbon and the efficiency of biochar produced at temperatures of 300 and 400 degrees Celsius were higher than other biochar produced at other temperatures. Biochar produced at 300°C has better characteristics in terms of carbon percentage and acidity efficiency compared to biochar produced at 400°C. Although these differences were not statistically significant, due to biochar production being more economical in terms of energy consumption, it is recommended to produce biochar at a temperature of 300 degrees Celsius.

M. Naderi, V. Sheikh, A. Bahrehmand, C.b. Komaki, A. Ghangermeh,
Volume 27, Issue 4 (12-2023)
Abstract

Greenhouse gases and the occurrence of climate change have occurred with the development of technology and the industrialization of human societies. long-term forecasting of climate parameters has always been interesting due to the importance of climate change for the earth and its inhabitants. General Circulation Models (GCMs) are one of the most widely used methods for evaluating future climate conditions. In the present study, the results of three general circulation models including the American model of GFDL-CM3, the Canadian model of CanESM2, and the Russian model of inmcm4ncml for the study area were evaluated and the CanESM2 model was selected as the superior model. The RCP scenarios 2.6, 4.5, and RCP 8.5 were used with the CanESM2 model to assess climate change conditions across the Hablehroud River basin for the period 2020-2051. According to the results, the total monthly precipitation shows an increasing trend in the coming decades 2020-2051 period compared to the period 1986-2017. The results of the study of temperature changes in the period 2020-2051 in the Hablehroud River basin also indicate an increase in the monthly average of maximum and minimum temperatures in the coming decades. The consequences of these conditions are of great hydrological importance in the study area, this condition necessitates the adoption of climate change adaptation policies in this watershed.

F. Gholamzadeh, H. Asgarzadeh, H. Khodaverdiloo, M.r. Mosaddeghi,
Volume 28, Issue 1 (5-2024)
Abstract

This study was conducted in the summer of 2021 to evaluate and validate the gravimetric soil water content measurements using a field oven. Ten soil types with a salinity of saturated paste (ECe) less than 4 dS m-1 and three saline soils were studied around Urmia Lake. Plots with dimensions of 1 m × 2 m were prepared for the selected soils to measure gravimetric soil water content and soil physical and chemical properties. The gravimetric water content (θm) values measured using the field oven (i.e., θmFO), were compared with those measured by a standard lab oven (i.e., θmLO). The soil water content values measured in the lab, regarded as a benchmark, were measured at 105 °C for 24 h. Temperatures of 120, 140, and 160 °C with three durations of 10, 15, and 20 min were used to dry the soil samples in the field oven. There was very good compatibility between the values of θmFO and θmLO when the soil samples were dried in the field oven for 15 or 20 min at all three temperatures. Significant linear relations were obtained between the θmFO and θmLO values as the slopes of linear relations were close to 1, the intercepts of relations were negligible and the distributions of measured data around the line 1 to 1 were unbiased. The minimal effects of soil organic matter content, clay content, salinity, and bulk density on water content measurements by the field oven indicate an important advantage of this method. These results confirm the high efficiency of the field oven for fast and reliable measurements of water content in different soils.


Page 3 from 3     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb