Search published articles


Showing 22 results for Agricultural

S. Ghasemi Pirbaloti, S. Soodaee Moshaee,
Volume 28, Issue 1 (5-2024)
Abstract

Since the long-term sustainability of garden ecosystems is dependent on maintaining the soil quality, knowing the condition of the soils and investigating the effects of the activities on the soil properties is very important and effective in ecosystem management. To investigate the soil quality index of almond (Prunus dulcis) orchards under different managed methods in ChaharMahal va Bakhtiari province, soil samples were collected from three points in each orchard and finally classified into 6 groups (Saman, Ben, Shahrekord, Kiar, Ardel, and Farsan). To determine the soil quality index, soil characteristics including pH, EC, total and water-soluble organic carbon, basal and substrate-derived respiration, rhizosphere microbial population, and available soil P and K were analyzed. The results showed that almond orchard management in different regions affected the soil characteristics and the processes evaluated in this study. The monitoring of soil properties showed that pH 7.05 - 8.48, EC 0.23 - 2.91 dS/m, microbial respiration 0.44 - 8.57 mg CO2.100 g-1.day-1, organic carbon 2.09 - 44.79 g/kg, available phosphorus 1.5 - 122.3 mg/kg, and available potassium were between 91.2 - 3038 mg/kg. Soil quality index components including chemical components, microbial activity, microbial population, and soil organic carbon were determined. The contribution of soil salinity to soil quality obtained using factorial analysis was the highest (31%), followed by microbial carbon mineralization coefficient (27%), rhizosphere microbial population (24%), and water-soluble organic carbon (18%). The soil quality index values for Saman, Ben, Shahrekord, Kiar, Ardal, and Farsan almond orchards were 0.46, 0.40, 0.51, 0.67, 0.54, and 0.37, respectively. These values showed that the evaluated soils are suitable for almond production in Shahrekord, Kiar, and Ardal, and for Saman, Ben, and Farsan, there is a need for serious management measures to improve soil quality and increase the sustainability of these agricultural ecosystems.

J. Ghaneiardakani, S.a. Mazhari, F. Ayati,
Volume 29, Issue 2 (7-2025)
Abstract

This study investigates the impact of agricultural activities on the soils of southern Mehriz by analyzing their geochemical composition and comparing the physicochemical properties of pistachio orchard soils (agricultural soils) with those of undisturbed natural soils. The results indicate that agricultural practices have led to an increase in Total Organic Carbon (TOC), averaging 1.5%, and a reduction in soil acidity. Additionally, phosphorus concentrations have risen in agricultural soils. These soils also exhibit enrichment in elements such as cadmium (Cd), antimony (Sb), chromium (Cr), nickel (Ni), lead (Pb), scandium (Sc), and rare earth elements (REE) compared to natural soils, with a more homogenized REE distribution pattern. Although the concentrations of these trace elements remain within national environmental standards and below critical thresholds, the study highlights a significant increase in the bioavailability of heavy metals due to agricultural activity. This finding underscores a potential environmental risk if such changes are not properly managed in the future.


Page 2 from 2     

© 2025 CC BY-NC 4.0 | Journal of Water and Soil Science

Designed & Developed by: Yektaweb