Search published articles


Showing 33 results for Neural Network

M. Isazadeh, P. Mohammadi, Y. Dinpazhoh,
Volume 21, Issue 4 (2-2018)
Abstract

Statistical analysis and forecast discharge data play an important role in management and development of water systems. The most fundamental issues of statistical analysis and forecast discharge in Iran are lack of data in long term period and lack of stream flow data in gauging stations. Considering the issues mentioned in this study, we tried to estimate the daily data flow (runoff) of Santeh gauging station in Kordestan province using the nearby hydrometric and meteorological stations data. This estimation occurred based on the sixteen different input combinations, including data of daily flow of hydrometric stations Safakhaneh and Polanian and daily runoff in Santeh precipitation gauging station. In this research, the daily flow estimation of the Santeh station in each of the months of the year was evaluated for sixteen different combinations and artificial neural network models and multiple linear regressions. The performance of each model was evaluated with the indicators RMSE, CC, NS and t-student statistic. The results showed good performance of both models but the performance of the artificial neural network model was better than the regression model in estimation of the daily runoff in the most months of the year. Mean error of artificial neural network and multiple linear regression models was respectively estimated as 6.31 and 8.07 m3/s in the months of the year. It should be noted that the artificial neural network, for each sixteen combination used, had better result than the regression model.

M. Pourmirza, A. Kamanbedast,
Volume 23, Issue 4 (12-2019)
Abstract

Occurrence of local scour is one of the most significant causes of damage to the pipes. Therefore, safe and economical design of pipes in the flow path requires a good estimate. In this study, based on the important and effective parameters in the scouring phenomenon, in order to develop educational patterns according to the data obtained in the laboratory of Ahvaz Islamic Azad University, models based on artificial neural networks were created with the NeuroSolution5 software. MLP, GFF and RBF were the models used in this study; after comparing, MLP was selected as the basis for our study. Finally, the effect of each parameter on scouring was determined using the  artificial neural networks technique, based on which the  shields parameter with a very high effect (more than 95 percent) was determined as one of the most effective causes of the local scour.

S. Eslami Jamal Abad1, A. Sharafati, E. Mohammadi Golafshani, F. Farsadania,
Volume 23, Issue 4 (12-2019)
Abstract

Expert aquatic designers face many problems; among these, in hydrology, defective occurrences in time-series can cause errors in the ultimate results of the study. This more often happens in the regions where the number of hydrometric and rain gauge stations is limited. In addition, assessing, developing and maintaining the use of water resources require accessible long-term and high-quality quality hydrological time-series. Thus, this necessitates correcting the statistical flaws and magnifies the importance of how to deal with the problems in the hydrological analyses. Statistical methods are, currently, used to infill data and statistical gaps. In this study, in order to introduce a multivariate method for estimating the missing data on rainfall and runoff, in a hydrologic homogeneous region in the Mazandaran province, self-organizing map methods were examined under two scenarios and some reliable estimates were obtained. In this regard, the correlation coefficients between the observational data and the model output were calculated for the precipitation data up to 0.92 and up to 0.95 for the runoff data. Therefore, to avoid the reduction of uncertainty caused by the inadequate data in water resource management, this method could be used.

A. Ahmadpour, S. H. Mirhashemi, P. Haghighatjou, M. R. Raisi Sistani,
Volume 24, Issue 3 (11-2020)
Abstract

In this study, we used the ARIMA time series model, the fuzzy-neural inference network, multi-layer perceptron artificial neural network, and ARIMA-ANN, ARIMA-ANFIS hybrid models for the modeling and prediction of the daily electrical conductivity parameter of daily teleZang hydrometric station over the statistical period of 49 years. For this purpose, the daily data for the 1996-2004 period were used for model training and data for the 1996-2006 period were applied for testing. In order to verify the validity of the fitted ARIMA models, the residual autocorrelation and partial autocorrelation functions and Port Manteau statistics were used. PMI algorithm were   then used to model and predict electrical conductivity for selecting the effective input parameter of the neural fuzzy inference network and the artificial neural network. The daily parameters of magnesium (with two days delay) and sodium (with one day delay), heat (with one day delay), flow rate (with two months delay), and acidity (with one day delay) were obtained with the lowest values of Akaike and highest values of hempel statistics as the input of the neural fuzzy inference network and the artificial neural network for modelling daily electric conductivity predictions; then predictions were made. Also, models evaluation criteria confirmed the superiority of the ARIMA-ANFIS hybrid model with the trapezoidal membership function and with two membership numbers, as compared to other models with a coefficient of determination of 0.86 and the root mean square of 29 dS / m. Also, the Arima model had the weakest performance. So, it could be applied to modeling and forecasting the daily quality parameter of the tele Zang hydrometer station.

S. H. Roshun, K. Shahedi, M. Habibnejad Roshan, J. Chormanski,
Volume 25, Issue 2 (9-2021)
Abstract

The simulation of the rainfall-runoff process in the watershed has particular importance for a better understanding of hydrologic issues, water resources management, river engineering, flood control structures, and flood storage. In this study, to simulate the rainfall-runoff process, rainfall and discharge data were used in the period 1997-2017. After data qualitative control, rainfall, and discharge delays were determined using the coefficients of autocorrelation, partial autocorrelation, and cross-correlation in R Studio software. Then, the effective parameters and the optimum combination were determined by the Gamma test method and used to implement the model under three different scenarios in MATLAB software. Gamma test results showed that today's precipitation parameters, precipitation of the previous day, discharge of the previous day, and discharge of two days ago have the greatest effect on the outflow of the basin. Also, the Pt Qt-1 and Pt Pt-1 Qt-1 Qt-2 Qt-3 combinations were selected as the most suitable input combinations for modeling. The results of the modeling showed that in the support vector machine model, the Radial Base kernel Function (RBF) has a better performance than multiple and linear kernels. Also, the performance of the Artificial Neural Network model (ANN) is better than the Support Vector Machine model (SVM) with Radial Base kernel Function (RBF).

M. Sayadi, H. Khosravi, S. Zareh, Kh. Ahmadali, S. Bagheri,
Volume 25, Issue 3 (12-2021)
Abstract

Desertification is a phenomenon that has more destructive effects in arid, semi-arid, and semi-humid regions than in other regions. This paper tries to provide a map of the future of desertification in Tehran Province, for futurism in the face of land degradation and desertification. The IMDPA model was used to evaluate land degradation and desertification. To use this model and evaluate desertification, three criteria of groundwater including groundwater depletion, electrical conductivity, and sodium adsorption ratio indices, climate criterion including precipitation, aridity, and drought indices, and land use criteria were selected as key criteria effected on desertification according to regional conditions. Land use index map with IGBP standard and zoning map of other indicators were prepared by IDW method for 2011 and 2016. The maps of land use index and other indices were predicted using the CA-Markov model in TerrSet software, and using the RBF method in artificial neural network toolbox, respectively. Scoring based on the IMDPA model, the maps of indices and criteria maps were prepared for 2011, 2016, and 2021. Finally, the desertification intensity map was calculated by geometric averaging for all three criteria for all three time periods. The results showed that 59.78% and 40.22% of the area of Tehran Province were in the low and medium classes, respectively. However, in 2016, the area of the medium class has increased to a 44.8%, and it is predicted that this increase will continue until 2021 so that 47.65% of the area of Tehran Province will be in the medium class. In addition, in this year, about 1% of the area of Tehran Province will be allocated to the high class in the western regions, which did not exist in the previous two periods. In general, due to human activities, the intensity of desertification in the western and southern parts of the province is higher than in the eastern and northern regions.

F. Zarif, A. Asareh, M. Asadiloor, H. Fathian, D. Khodadadi Dehkordi,
Volume 26, Issue 2 (9-2022)
Abstract

An accurate and reliable prediction of groundwater level in a region is very important for sustainable use and management of water resources. In this study, the generalized feedforward (GFF) and radial basis function (RBF) of artificial neural networks (ANNs) have been evaluated for monthly predicting groundwater levels in the Dezful-Andimeshk plain in southwestern Iran. The partial mutual information (PMI) algorithm was used to determine efficient input variables in ANNs. The results of using the PMI algorithm showed that efficient input variables for monthly predicting groundwater level for piezometers affected by water discharge and recharge include only water level in the current month. Also, efficient input variables for predicting the water level for piezometers affected only by water discharge include the water level in the current month, the water level in the previous month, the water level in the previous two months, transverse coordinates of piezometers to UTM, the water level in the previous three months, the water level in the previous four months, the water level in the previous five months and longitudinal coordinates of piezometers to UTM. In addition, efficient input variables of monthly predicting groundwater level for piezometers neither affected by water discharge nor water recharge, respectively, include the water level in the current month, the water level in the previous month, the water level in the previous two months, the water level in the previous three months, the water level in the previous four months, the water level in the previous five months, the water level in the previous six months, transverse coordinates of piezometer to UTM and longitudinal coordinates of piezometer to UTM. The results indicated that the GFF network is more accurate than the RBF network for monthly predicting groundwater level for piezometers including water discharge and recharge and piezometers including only water discharge. Also, the RBF network is more accurate for monthly predicting groundwater levels for piezometers that include neither water discharge nor recharge than the GFF network.

M. Seifollahi, S. Abbasi, M.a. Lotfollahi-Yaghin, R. Daneshfaraz, F. Kalateh, M. Fahimi-Farzam,
Volume 26, Issue 2 (9-2022)
Abstract

Unpredictable settlement of earth dams has led researchers to develop new methods such as artificial neural networks, wavelet theory, fuzzy logic, and a combination of them. These methods do not require time-consuming analyses for estimation. In this research, the amount of settlement in rockfill dams with a central core has been estimated using artificial intelligence methods. The data of 35 rockfill dams with a central core were used to train and validate the models. The artificial neural network, wavelet transform model, and fuzzy-neural adaptive inference system are the proposed models which were used in the present study. According to the results, the best model for an artificial neural network had two hidden layers, the first layer of 18 neurons and the second layer of 7 neurons, with the Tansig-Tansig activation function, with a coefficient of determination R2=0.4969. The best model for the fuzzy-neural inference system had the ring function (Dsigmoid) as a membership function, with three membership functions and 142 repetitions with a coefficient of determination R2=0.2860. Also, combining wavelet-neural network conversion with the coif2 wavelet function due to the more adaptation this function has to the input variables, the better the performance, and this function, with a coefficient of determination R2=0.9447, had the highest accuracy compared to other models.

B. Shahinejad, A. Parsaei, A. Haghizadeh, A. Arshia, Z. Shamsi,
Volume 26, Issue 3 (12-2022)
Abstract

In this research, soft computational models including multiple adaptive spline regression model (MARS) and data group classification model (GMDH) were used to estimate the geometric dimensions of stable alluvial channels including channel surface width (w), flow depth (h), and longitudinal slope (S) and the results of the developed models were compared with the multilayer neural network (MLP) model. To develop the models, the flow rate parameters (Q), the average particle size in the floor and body (d50) as well as the shear stress (t) as input and the parameters of water surface width (w), flow depth (h), and longitudinal slope (S) were used as output parameters. Soft computing models were developed in two scenarios based on raw parameters and dimensionless form independent and dependent parameters. The results showed that the statistical characteristics in estimating w, the best performance is related to the MARS model, whose statistical indicators of accuracy in the training stage are R2 = 0.902, RMSE=1.666 and in the test phase is R2 = 0.844, RMSE=2.317. In estimating the channel depth, the performance of both GMDH and MARS models is approximately equal, both of which were developed based on the dimensionless form of flow rate as the input variable. The statistical indicators of both models in the training stage are R2 » 0.90, RMSE » 8.15 and in the test phase is R2 » 0.90, RMSE = 7.40. The best performance of the developed models in estimating the longitudinal slope of the channel was related to both MARS and GMDH models, although, in part, the accuracy of the GMDH model with statistical indicators R2 = 0.942, RMSE = 0.0011 in the training phase and R2 = 0.925, RMSE = 0.0014 in the experimental stage is more than the MARS model.

A. Shahbaee Kotenaee, H. Asakereh,
Volume 26, Issue 4 (3-2023)
Abstract

Precipitation is one of the most significant climatic parameters; its distribution and values in different areas is the result of complex linear and nonlinear relationships between atmospheric elements-climatic processes and the spatial structure of the earth's surface environment. Classification of data and placing them in small and homogeneous zones can be effective in improving the understanding of these complex relationships and their results. In the present study, zoning and analyzing the distribution of rainfall in Iran concerning environmental factors was performed using the annual precipitation data of 3423 synoptic, climatological, and gauge stations in the country during the period from 1961 to 2015 and the altitude, slope, aspect, and station density data. After standardization and preparation of the data matrix, the optimal number of clusters was determined and the data set was entered into the neural-fuzzy network model (ANFIS-FCM). The results showed that the values of R2  and MAE  indices were 0.76 and 0.23, respectively which indicate the appropriate accuracy of the model. It was also found that in the four output zones of the model, environmental factors have a high impact on the spatial distribution of precipitation. In the first and third zones, the combination of high altitude and slope factors along with geographical proximity to precipitation systems has caused the average annual rainfall in these zones to be 318 and 181 mm, respectively. The mean annual rainfall has decreased to about 100 mm by the weakening of the role of environmental factors in the second and fourth clusters.

B. Shahinejad, A. Parsaei, H. Yonesi, Z. Shamsi, A. Arshia,
Volume 26, Issue 4 (3-2023)
Abstract

In the present study, the flow rate in flues containing lateral semi-cylinders (SMBF) was simulated and estimated under free and submerged conditions using back vector machine models (SVM), spin multivariate adaptive regression (MARS), and multilayer artificial neural network (MLPNN) model. In free flow mode, the dimensionless parameters extracted from the dimensional analysis include the ratio of upstream flow to throat width and contraction ratio (throat width to channel width), and in the submerged state, in addition to these two parameters, the depth-to-throat width, and bottom-depth parameters upstream depth were used as input and the two-dimensional form of flow rate was used as the output of the models. The results showed that in free flow mode in the validation stage, the MARS model with statistical indices of R2 = 0.985, RMSE = 0.008, MAPE = 0.87%, and the SVM model with statistical indices of  R2 = 0.971, RMSE = 0.0012, MAPE =1.376%, and MLPNN model with statistical indices of R2 = 0.973,  RMSE = 0.011, MAPE = 1.304% have modeled and predicted the flow rate. In the submerged state, the statistical indices of the developed MARS model were R2 = 0.978, RMSE = 0.018, MAPE = 3.6%, and the statistical indices of the SVM model were R2 = 0.988, RMSE = 0.014, 2%. MAPE = 4, and the statistical indicators of the MLPNN model were R2 = 0.966, RMSE = 0.022, and MAPE = 5.7%. In the development of SVM and MLPNN models, radial kernel and hyperbolic tangent functions were used, respectively.

A. Shahbaee Kotenaee, H. Asakereh,
Volume 27, Issue 1 (5-2023)
Abstract

Precipitation is one of the main elements of the Earth's hydro-climatic cycle and its variability depends on the complex and non-linear relationships between the climate system and environmental factors. Understanding these relationships and doing environmental planning based on them is difficult. Therefore, classifying data and dividing information into homogeneous and small categories can be helpful in this regard. In the present study, an attempt was made to prepare precipitation, altitude, slope, slope direction, and station density data for 3423 synoptic, climatological, and gauge stations in Iran in the 1961-2015 years’ period. These data were entered into fuzzy (FCM), self-organizing map neural network (SOM-ANN) models and precipitation-spatial zoning. The outputs of the two models were compared in terms of accuracy and efficiency. The results obtained from the output of the models have divided the rainfall conditions of Iran into four zones concerning environmental factors. Evaluations also showed that both models had high accuracy in classifying precipitation parameters; However, the fuzzy model has a relative advantage over the neural network model in the accuracy of results.

M. Majedi Asl, T. Omidpour Alavian, M. Kouhdaragh, V. Shamsi,
Volume 27, Issue 3 (12-2023)
Abstract

Non-linear weirs meanwhile economic advantages, have more passing flow capacity than linear weirs. These weirs have higher discharge efficiency with less free height upstream compared to linear weirs by increasing the length of the crown at a certain width. Intelligent algorithms have found a valuable place among researchers due to their great ability to discover complex and hidden relationships between effective independent parameters and dependent parameters, as well as saving money and time. In this research, the performance of support vector machine (SVM) and gene expression programming algorithm (GEP) in predicting the discharge coefficient of arched non-linear weirs was investigated using 243 laboratory data series for the first scenario and 247 laboratory data series for the second scenario. The geometric and hydraulic parameters were used in this research including the water load (HT), weir height (P), total water load ratio (HT/p), arc cycle angle (Ɵ), cycle wall angle (α), and discharge coefficient (Cd). The results of artificial intelligence showed that the combination of parameters (Cd, H_T/p, α, Ɵ) respectively in GEP and SVM algorithms in the training phase related to the first scenario (Labyrinth weir with cycle wall angle 6 degrees) were respectively equal to (R2=0.9811), (RMSE=0.02120), (DC=0.9807), and (R2=0.9896), (RMSE=0.0189), (DC=0.9871) in the second scenario (Labyrinth weir with a cycle wall angle of 12 degrees) it was equal to (R2=0.9770), (RMSE=0.0193), (RMSE=0.9768), and (R2 = 0.9908), (RMSE = 0.0128), (DC = 0.9905), which compared to other combinations has led to the most optimal output that shows the very favorable accuracy of both algorithms in predicting the coefficient the Weir discharge is arched non-linear. The results of the sensitivity analysis indicated that the effective parameter in determining the discharge coefficient of the arched non-linear Weir in GEP and in SVM is the total water load ratio parameter (HT/p). Comparing the results of this research with other researchers revealed that the evaluation indices for GEP and SVM algorithms of this research had better estimates than other researchers.


Page 2 from 2     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb