Search published articles


Showing 63 results for Nitrogen

S. Abdi Ardestani, B. Khalili, M. M. Majidi,
Volume 25, Issue 1 (5-2021)
Abstract

Long-term drought effect is one of the main factors of global climate change, with  consequences for soil biogeochemical cycling of carbon and nitrogen and the  function of soil ecosystem under drought conditions. We hypothesized that 1) the Bromus inermis, Dactylis glomerata and festuca arundinacea species would differ in their rhizosphere responses to drought and 2) combined plant species and drought would have offsetting effects on the  soil biological traits. We tested these hypotheses at the long-term drought field expreiment at the  Lavark Farm of Isfahan University of Technology by analyzing soil microbial biomass carbon and nitrogen and activity of β-glucosaminidase in the rhizosphere of Bromus inermis, Dactylis glomerata and festuca arundinacea species. Soil microbial biomass carbon and nitrogen responses to drought depended on plant species,  such that the highest MBC was recorded in the Bromus inermis rhizosphere, while the  lowest was in the Dactylis glomerata rhizosphere, thereby suggesting the greater microbial sensitivity to drought in the Dactylis glomerata rhizosphere. Genotype variations (drought tolerate and sensitive) mostly affected the change in the β-glucosaminidase activity, but they were not significantly affected by drought treatment and plant species. In general, the positive effects of  the plant genotype could offset the negative consequences of drought for soil microbial biomass and traits.

A. Balvaieh, L. Gholami, F. Shokrian, A, Kavian,
Volume 26, Issue 4 (12-2022)
Abstract

Changes in nutrient concentrations of soil can specify optimal management of manure and prevent environmental and water resources pollution. The present study was conducted with the objective of changing macronutrients concentrations of Nitrogen, Phosphorus, and Potassium with amendments application of polyvinyl acetate, bean residual, and a combination of polyvinyl acetate + bean residual for time periods of one, two, and four months. The results showed that the application of soil amendments had various effects on changing Nitrogen, Phosphorus, and Potassium. The maximum amount of Nitrogen related to the treatment of bean residual at the time period of four months before simulation (with a rate of 44.62 percent) and minimum amount of nitrogen related to Polyvinyl acetate treatment at the time period of one month (with a rate of -1.92 percent). The minimum rate of Phosphorus was measured at the treatment of bean residual at the time period of one month before simulation (with a rate of 0.95 percent). The maximum amount of Potassium related to the treatment of Polyvinyl acetate at the time period of four months before simulation (with a rate of 189.35 percent) and the minimum amount of Potassium related to the combination of bean residual + Polyvinyl acetate at the time period of one month after simulation (with a rate of 40.66 percent). Therefore, the application of amendments has various effects on changing soil macronutrients at different time periods.

Sh. Amiri, B. Khalili,
Volume 29, Issue 1 (4-2025)
Abstract

Soils are continuously exposed to large amounts of engineered nanoparticles, particularly silver nanoparticles (AgNPs), which can affect soil microbial activities and nitrogen cycling. The hypotheses of the present study were: (i) vegetation types would differ in their responses to Ag types and concentrations, (ii) these responses would be linked to changes in soil protein and amino acid concentrations, and (iii) combined plant root systems alongside Ag types and concentrations would have offsetting effects on soil protein and amino acid concentrations. A greenhouse experiment was conducted to test these hypotheses using a factorial arrangement of treatments within a randomized block design. Two soil types with loamy sand and sandy loam textures were collected from agricultural fields in Isfahan, specifically from the Badroud (33 44′ 50" N, 51◦ 57′ 55" E) and Femi (33◦ 42′ 17" N, 51◦ 59′58" E) regions. The treatments included: 1) soil types (loamy sand and sandy loam), 2) root systems (non-planted, wheat, and safflower), 3) Ag types (no Ag added, AgNPs, and AgNO3), and 4) Ag concentrations (50 and 100 ppm). The plants were harvested 110 days after sowing, with soil samples collected from both the root zone and non-planted soil, after which the concentrations of protein and amino acids were measured. In the Badroud soil, protein concentration significantly decreased (p < 0.05) with increasing depth. Although depth changes did not show a significant difference in protein concentration in the soil under wheat cultivation, increasing depth resulted in a significant decrease (p < 0.05) in protein concentration in the soil under safflower cultivation. In the Fami soil, the addition of silver nitrate led to a significant (p < 0.05) increase in protein concentration, despite the fact that the addition of silver nanoparticles had no significant (p < 0.05) effect on soil protein concentration. In the Badroud soil, the highest concentration of soil amino acids was observed in the silver nitrate treatment, while the silver nanoparticle treatment did not significantly affect soil amino acid concentrations (p < 0.05). However, applying silver treatments at both tested concentrations resulted in a significant increase (p < 0.05) in soil amino acid levels. Overall, the effects of nanoparticles varied depending on the measured parameters (protein or amino acid), soil texture, and type of cultivation. Further studies are needed to determine the mechanisms by which AgNPs and AgNO3 affect the soil nitrogen cycle in the presence of plants at different soil depths.


Page 4 from 4     

© 2025 CC BY-NC 4.0 | Journal of Water and Soil Science

Designed & Developed by: Yektaweb