Search published articles


Showing 886 results for SH

M.r. Shoaibi Nobariyan, M.h. Mohammadi,
Volume 29, Issue 2 (Summer 2025)
Abstract

The objective of this study is to investigate the effects of solutes and water quality on evaporation amount and rate in two sandy and clayey soils. Soil samples containing aggregates and sand particles with diameters ranging from 0.5 to 1 millimeter were collected. Six columns were prepared during the experiment; three columns were filled with sandy soil and three with aggregated soil, each measuring 60 cm in height and 15.5 cm in inner diameter. One reference column was filled with distilled water. A saturated calcium sulfate solution was added to two columns, a 0.01 molar calcium chloride solution was added to two other columns, and distilled water was added to the remaining two. The amount of water lost through evaporation was recorded every 8 to 12 hours by weighing the columns. After approximately 130 days, the columns were sectioned, allowing for the establishment of moisture and solute concentration profiles for each soil column. The results indicated that the first and second stages of evaporation were distinguishable in sandy soil, whereas in clayey soil (aggregated soil), only the first stage of evaporation occurred due to the gradual transfer of water and the continuous hydraulic connection from the surface to the water table. The presence and type of solutes affected the evaporation rate and moisture profile, reducing evaporation and increasing water retention in deeper soil layers. Hydraulic connectivity (calcium sulfate > calcium chloride > distilled water) and the resulting capillary rise of and supply of evaporated water from higher layers caused a greater evaporation rate in the calcium sulfate compared to the calcium chloride and distilled water treatments in both soil types. Additionally, the formation of a salt crust on the soil surface due to solutes disrupted the hydraulic connection with the surface, resulting in decreased evaporation rates and cumulative evaporation.

A. Raisi Nafchi, J. Abedi Koupai, M. Gheysari, H.r. Eshghiazeh,
Volume 29, Issue 3 (Fall 2025)
Abstract

Rice is one of the most important crops and the primary food source for more than half of the world's population. The present study was conducted to compare the direct-seeded rice (DSR) of three rice varieties (Jozdan, Firuzan, and Sazandegi) using surface (DI) and subsurface (SDI) drip irrigation systems. The experiment was performed as a split–split plot arranged in a randomized complete block design with three replications in two years (2019 and 2020) in the research farm of Isfahan University of Technology in Najaf-Abad. According to the results of the variance analysis, the most suitable cultivar for DSR in the region (among the tested cultivars) is Sazandegi with a grain yield of 3400 kg/h-1. The results of this experiment showed that the amount of water consumed in DI was 20% less than in SDI. Also, DSR reduced water consumption by 40% compared to transplanted rice (TPR) in the region. However, the grain yield also decreased by about 45%.

M. Goosheh, A. Azadi,
Volume 29, Issue 3 (Fall 2025)
Abstract

Soil organic carbon provides conditions for better plant growth by increasing soil quality by improving physical, chemical, and biological properties of the soil. Therefore, an experiment was conducted in a randomized complete block design (RCBD) with three replications at the Shavour Agricultural Research Station in Khuzestan Province to investigate the effect of different sources of organic matter on some soil properties and wheat yield. The main plots included cow manure, poultry manure, wheat straw, bagasse, and sugarcane filter cake, and the subplots included three fertilizer levels of 2.5, 5, and 10 tons per hectare. Also, one plot was considered as a control (without organic fertilizer) in each replication. The results showed that the best sources of organic fertilizer available in the province that have had a favorable result in increasing wheat yield and improving soil physical properties are filter cake, cow manure, and sugarcane bagasse fertilizers (with a yield of 4772, 4467, and 4452 kg/ha, respectively). Wheat straw also has the least effect on yield (4019 kg/ha) and plays a major role only in improving soil physical and chemical properties. It is worth noting that since no significant difference was observed between the fertilizer consumption amounts in the overall results, the consumption of 2.5 tons per hectare of each fertilizer source is more economical and is recommended. It also seems that the combined application of filter cake with sugarcane bagasse or cow or chicken manure with wheat straw and stubble, in a total amount of 2.5 tons per hectare, has a more favorable result in increasing wheat yield and improving soil physical properties.

J. Karami, M. Habibi Nokhandan, M. Azadi, A. Rashidi Ebrahim Hesari,
Volume 29, Issue 3 (Fall 2025)
Abstract

The present study investigates shoreline changes along the southern Caspian Sea coast in Mazandaran Province over 24 years (2000-2023) using Landsat 8 and Sentinel-2 satellite imagery. The images were obtained from the USGS and Google Earth Engine platforms, and after geometric and radiometric corrections were processed using near-infrared and shortwave Infrared bands to accurately detect the boundary between land and water. Shorelines were visually extracted from the imagery and digitized for each time interval. Spatial variations in the shoreline were analyzed using the Digital Shoreline Analysis System (DSAS) within the ArcGIS environment, applying statistical methods including Net Shoreline Movement (NSM), Shoreline Change Envelope (SCE), End Point Rate (EPR), and Linear Regression Rate (LRR). The results indicate a significant shoreline retreat in many areas of the study region, alongside a continuous decline in the Caspian Sea water level during the last decade. The integration of remote sensing analyses with atmospheric and hydrological data (temperature, precipitation, and river discharge) improved the accuracy of the results and suggests that the southern coastlines—particularly in Mazandaran—may experience more severe retreat by 2050, if current trends continue. These findings underscore the need for intelligent water resource management and the adoption of climate-adaptive policies in the region.

M. Shayannejad, E. Fazel Najafabadi, F. Hatamian Jazi,
Volume 29, Issue 3 (Fall 2025)
Abstract

Regarding the increasing need for water resources and the decline of surface water resources, awareness of these resources is a crucial need in planning, developing, and protecting them. This research was conducted to model the water quality index (the most widely used feature of determining water quality) using machine learning models (Random Forest and Support Vector Machine) in the Zayandehrood River. Regarding the large number of water quality indices, the NSFWQI index was used in this study. First, this index was calculated, and then, input data, including water quality characteristics of 8 stations over 31 years, and the river water quality index were used. In this research, 80% of the data was used in the training stage, and the remaining 20% was used in the evaluation stage. The optimal model was selected based on the evaluation criteria, including R2, CRM, and NRMSE. The results showed that the Support Vector Machine algorithm (0.931 < R² < 0.982, 1.321

A.r. Jafarnejadi, A. Gilani, F. Meskini-Vishkaee, M. Hoseini Chaleshtori,
Volume 29, Issue 3 (Fall 2025)
Abstract

Rice, as one of the world's most strategic crops, plays a vital role in global food security. This study investigated the effects of different nutrition management approaches on yield and water productivity in dry direct-seeded rice cultivation (local Anbouri Red Dwarf cultivar) at Shavoor Research Station in Khuzestan Province. The experiment was conducted in a randomized complete block design with four treatments, including 1) Farmer's conventional practice, 2) Soil test-based fertilization, 3) Soil test-based fertilization + supplementary nutrition, and 4) 25% reduced chemical fertilizers + biofertilizers, with three replications. Results demonstrated that the supplementary nutrition (4270 kgha-1) and biofertilizer with 25% chemical fertilizer reduction (4356 kgha-1) treatments increased yield by 17% and 19.3 %, respectively, compared to conventional practice (3651 kgha-1). This improvement was primarily attributed to increased panicles per m² (10-14%) and enhanced nutrient uptake efficiency. The biofertilizer treatment also showed the highest water productivity (0.25 kg m-³) and the best benefit-cost ratio (23.25). Economic analysis confirmed that combining biofertilizers with 25% chemical fertilizer reduction significantly reduced costs while maintaining yield. These findings suggest that integrating soil testing with either biofertilizers or stage-specific nutrition represents an effective strategy for enhancing yield, improving water use efficiency, and reducing dependence on chemical inputs in dry-seeded rice cultivation. These methods can be recommended as sustainable models for farmers in arid regions like Khuzestan, which face salinity challenges and water resource limitations.


Page 45 from 45    
...
45
Next
Last
 

© 2025 CC BY-NC 4.0 | Journal of Water and Soil Science

Designed & Developed by: Yektaweb