Showing 1604 results for on
H. R. Ghazvinian, H. Karami, Y. Dadrasajirlou,
Volume 28, Issue 2 (8-2024)
Abstract
One method used to estimate the evaporation rate involves employing various types of evaporation pans, including the standard Colorado Sunken and Class A evaporation pans. This study aimed to investigate and compare the evaporation rates from two pans, Class A and Colorado Sunken, in Semnan City. The Colorado Sunken evaporation pan was utilized as the test pan, and the test was conducted in an open space near the Faculty of Civil Engineering at Semnan University, located in Semnan City. Evaporation measurements were recorded daily for 123 days, from June 1, 2017, to September 31, 2017. The evaporation amount from the Class A pan was obtained from the synoptic station of Semnan city, situated 2.39 km away from the test site, and was subsequently analyzed. Meteorological data, including maximum and minimum temperature, maximum and minimum relative humidity, wind speed, sunshine hours, and air pressure, were also collected from the Semnan synoptic station and compared with the experimental evaporation data. The results indicated no significant difference in the daily evaporation amount between the Class A pan and the Colorado Sunken pan during the tested periods. The best statistical distribution, based on Kolmogorov–Smirnov test, for the Class A evaporation pan and the buried Colorado pan, were selected as Error with (k-s=0.05019) and Gamma with (k-s=0.05552). The coefficient of determination between the two pans was estimated to be approximately 93%. Further analysis revealed that the rate of evaporation is most closely associated with the maximum daily temperature. Pearson's correlation coefficient for the maximum temperature with the Class A evaporation pan and the Colorado Sunken pan was found to be 0.623 and 0.647, respectively.
Y. Choopan, H. Arianpour,
Volume 28, Issue 2 (8-2024)
Abstract
Reducing the effects of the misuse of urban wastewater is to use it in agriculture along with the subsurface irrigation system, which effects on the soil also require extensive investigations. Therefore, the present research was performed in a randomized complete block design with two factors of the type of irrigation source (well water W1 and treated urban wastewater W2) and the type of irrigation system (surface S1 and subsurface drip S2) in three replications (R) for a soil depth of 0-40 centimeter during two crop seasons. The results showed that the potassium, sodium, salinity, and sodium absorption ratio were significant at the 1% probability level in the comparison of system type and irrigation source type, whereas the values of pH, calcium, and magnesium were not significant in the comparison of system type and irrigation source type. The lowest value of calcium, magnesium, sodium cations, chlorine, phosphate, and sulfate anions was obtained in the W1S1 treatment. Also, the highest parameters of salinity, calcium, magnesium, phosphate, potassium, and chlorine were observed for the W2S2 treatment. It can be concluded that irrigation with urban wastewater has improved the chemical properties of the soil, and the type of irrigation system has had minor changes.
S. Esmailian, M. Pajouhesh, N. Gharahi, Kh. Abdollahi, Gh. Shams,
Volume 28, Issue 2 (8-2024)
Abstract
Studying the process of soil erosion and evaluating its effective factors is one of the most important prerequisites for proper management of soil and water resources. This study was conducted to investigate the production of surface and pipe runoff and sediment using artificial rainfall on silt loam soil in the laboratory. So, the soil was collected from the study area and transported to the laboratory. Laboratory experiments were performed on a soil bed in a rectangular flume with three pipes, at slopes of 2%, 6%, 10%, 14%, and 18% under simulated rain (30 mm/h) for one hour. Related graphs were drawn in Excel to analyze the results, and Spearman's correlation test was used in SPSS software to check the correlation between runoff and sediment values in each slope. The results showed that with the increase in slope, the sum of surface and pipe runoff and sediment increased over time. For example, in a slope of 2%, the runoff and sediment in the initial moments of the experiment increased from 0 to 1.3 liters and 26.2 g m-2 at the end of the experiment. Also, the correlation coefficient between runoff and sediment in the slopes was 0.98, 0.62, 0.4, 0.93, and 0.15, respectively, which was significant in some, but in others, it was not significant because of soil loss.
V. Rezaei, S. S. Eslamian, J. Abedi Koupai, A. R. Gohari,
Volume 28, Issue 2 (8-2024)
Abstract
The relationship between intensity-duration-frequency of rainfall is a significant tool for estimating flood discharge. According to the sparsely available rain gauge stations and the development of technology, it is possible to use satellite rainfall data with different temporal and spatial resolutions. PERSIANN rainfall data with a time resolution of 1 and 6 hours were used in this research. Also, the spatial resolution of these data is 0.04 x 0.04 degrees. Rainfall data from synoptic stations around the Kan basin were also used. Three common continuous probability distributions of Gamble, Pearson type 3, and Log Pearson type 3 with return periods of 2, 5, 10, 25, 50, and 100 years were investigated to calculate and check the IDF curve. In general, the precipitation intensity obtained from Gumble's method was more than Pearson Type 3's method. Log Pearson type 3 distribution did not provide acceptable results in this research. The two interpolation methods of inverse distance weighting and empirical Bayesian kriging were used to generalize the frequency intensity curves to the entire Kan basin. The results showed little difference between these two methods, except for Pearson type 3 probability distribution.
H. Ebrahimi Golbosi, E. Fazel Najafabadi, M. Shayannejad,
Volume 28, Issue 2 (8-2024)
Abstract
Surface irrigation is one of the most common irrigation methods. Due to the low efficiency of surface irrigation, water loss is significant in this system. It is necessary to know the characteristics and coefficients of water infiltration rate in the soil for accurate and adequate planning of surface irrigation. One of the equations used in this field is Phillip's infiltration equation. In this study, the infiltration coefficients of Phillip's equation and Manning's roughness coefficient in border irrigation are determined based on the comparison of the actual advance curve with the advance curve calculated with the dynamic wave model, and the results were compared with the double cylinder method and the two-point method of Ebrahimian et al. (5). The actual infiltration volume was obtained from the difference between the inlet and outlet volumes. The error of the mentioned method in calculating the infiltration volume was 5.53%. Meanwhile, the errors in the double cylinder and two-point Ebrahimian (5) method were 59.62% and 19.08%, respectively. In heavy soils, the longer the length of the border increases, the method is more accurate in estimating Philip's coefficients, while in light soils, the advancing time, which in addition to length is a function of permeability, input discharge, and the slope of the bottom of the bed is increased, the accuracy of the method in estimating Philip's penetration coefficients is increased.
A.r Vaezi, Kh. Sahandi, F. Haghshenas,
Volume 28, Issue 3 (10-2024)
Abstract
Water erosion can be affected by land use change and soil degradation by agricultural activities. This study was conducted to investigate the effects of land use change in poor pastures on soil physical degradation and water erosion in semi-arid regions. Experiments were performed in 42 soil samples taken from seven areas covering the two land uses: poor pasture and rainfed agriculture, which have different soil textures (clay loam, silty clay loam, sandy clay loam, silt loam, loam, sandy loam, and sandy loam). The physical characteristics of soils were measured in the samples of both types of land use and its changes were expressed as physical degradation of the soil. The soil's susceptibility to water erosion was measured under simulated rainfall with 50 mm h-1 intensity for 60 min. The results showed that the land use change in pastures leads to the physical deterioration of soils; so bulk density, porosity, macropore, field capacity, saturated point, aggregate size, and aggregate stability were degraded with a rate of 28, 22, 41, 11, 5, 62, and 63 percentages. The structural characteristics of soil (aggregate size and stability) had the highest physical deterioration due to the land use change in the pastures. The change in land use change greatly increased the sensitivity of soils to water erosion. A significant relationship was found between the susceptibility of water erosion and the soil's physical degradation. The soils with coarser and more stable aggregates have higher physical degradation by the land use change and in consequence show more susceptibility to water erosion.
M.j. Aghasi, S.a.r. Mousavi, M. Tarkesh, S. Soltani,
Volume 28, Issue 3 (10-2024)
Abstract
Astragalus is the vegetation of many mountains of Iran's plateau and plays a major role in providing ecosystem services due to its pillow shape and deep rooting system, they facilitate the control and penetration of precipitation into the soil. The correlation of Astragalus ecosystems with arid and semi-arid climates has made them vulnerable to climate change. In this study, a runoff yield map based on the Budyco curve under current and future conditions of climate change (2050) was prepared using climate and temperature data from the Chelsea site (CanESM2 GCM) in TerrSet software and by using maps of sub-watersheds, annual precipitation, annual potential evapotranspiration, soil depth, plant accessible water and the current and future "Land Cover - Land Use" map, with a combination of field methods and species distribution models at the local scale of the Shur River watershed of Dehaghan (Central Zagros). Finally, the excess runoff damage produced due to climate change was estimated using the replacement cost method. The results indicated an increase in the annual runoff volume of the watershed from 70 million cubic meters to 105 million cubic meters under climate change conditions for the RCP26 scenario in 2050. Taking into account the cost of 10 million Rials for controlling 530 cubic meters of runoff through various watershed management projects, preventing the damages of excess runoff produced requires a credit amounting to 660 billion Rials based on the present value. This study proved the ability of TerrSet software to predict and produce an ecosystem service map of runoff yield under climate changes or land use changes and with the purpose of valuation on a local scale. Also, the above valuation can be the basis for planning and providing credit for the study and implementation of watershed management projects to deal with the threats of climate change.
B. Attaeian, F. Teymorie Niakan, B. Fattahi, V. Zandieh,
Volume 28, Issue 3 (10-2024)
Abstract
The objective of this study was to investigate the effect of wildfire in the rangelands of the Gonbad region of Hamedan on soil organic carbon storage in two control and fire areas after three years of fire, and the feasibility of using remote sensing in indirect estimation of soil carbon. Therefore, 20 soil surface (0-10cm depth) samples were collected from the burned area and 20 samples from the control area (40 samples in total) by the systematically random method after three years of fire time. Changes in organic carbon, total nitrogen, acidity, and salinity of surface soil were tested by independent t-test between control and fire areas. Then, to investigate the linear relationship between the storage of soil organic carbon with other parameters, the Pearson correlation was used in SPSS v. 26. The results of the independent t-test showed that there was no significant difference in EC, acidity, and soil organic carbon of the control and fire areas, but the amount of total soil nitrogen showed significantly different. The results showed a significant positive correlation was observed between soil organic carbon and total nitrogen at the level of one-hundredth of 0.830 (p< 0.01) in the fire area, and the BI index showed a significant negative correlation of 0.727 (p< 0.05). In the control area, a significant positive relationship was observed between organic carbon and total nitrogen at the rate of 0.627 (p <0.05). The results of processing Landsat 8 images (OLI-TIRS sensor) in the fire area showed that there was a statistically significant relationship between soil organic carbon and light and wetness index obtained from tasseled cap (-0.726 and 0.674, respectively) and PC1 component obtained from principal component analysis and -0.724 (p <.05). These results indicate that it is possible to use tasseled cap images to predict soil organic carbon in fire areas.
M. Amiri, E. Fazel Najafabadi, M. Shayannejad,
Volume 28, Issue 3 (10-2024)
Abstract
Piano key weirs are a type of non-linear weir that have a higher discharge coefficient than similar linear weirs. These hydraulic structures have a lightweight foundation and a simple structure is designed and installed on dams and drainage channels. Due to the high efficiency of these weirs, the investigation of downstream scour and ways to reduce it has been the focus of engineers in recent years. In the present study, a trapezoidal type C piano key weir, three discharges, and three tailwater depths were used. Two obstacles with heights of 0.02 and 0.04 meters were also used at the end of the weir exit keys. The results showed that the presence of an obstacle reduces scour at the toe of the weir. The amount of reduction in scour at the toe of the weir was greater in the weir with a larger obstacle height than in the weir with a smaller obstacle height, and in both cases was less than in the simple weir. The presence of an obstacle reduces the maximum depth of scour and moves the distance of the maximum depth of scour away from the toe of the weir. In the weir with obstacle heights of 0.02 and 0.04 meters, compared to the weir without an obstacle, the amount of maximum scour depth is approximately 16.4% and 26.9% less, and the distance of the maximum scour depth is approximately 8.7% and 19.1% more than the weir without an obstacle. The scour index in weirs with obstacles is less than in weirs without obstacles, which can reduce the risk of weir overturning. The lowest value of the scour index was observed in the weir with an obstacle height of 0.04 meters, which is approximately 41.2% less than the weir without an obstacle.
M.a. Abdollahi, J. Abedi Koupai, M.m Matinzadeh,
Volume 28, Issue 3 (10-2024)
Abstract
Today, the problems related to floods and inundation have increased, particularly in urban areas due to climate change, global warming, and the change in precipitation from snow to rain. Therefore, there has also been an increasing focus on rainfall-runoff simulation models to manage, reduce, and solve these problems. This research utilized SewerGEMS software to explore different scenarios to evaluate the model's performance based on the number of sub-basins (2 and 8) and return periods (2 and 5 years). Additionally, four methods of calculating concentration time (SCSlag, Kirpich, Bransby Williams, and Carter) were compared to simulate flood hydrographs in Shahrekord city. The results indicated that increasing the return period from 2 to 5 years leads to an increase in peak discharge in all scenarios. Furthermore, based on the calculated continuity error, the Kirpich method is preferred to estimate the concentration-time in scenarios with more sub-basins and smaller areas. For the 2-year return period, a continuity error of 4% was calculated for the scenario with 2 sub-basins, while for the 5-year return period, the continuity error was 19%. On the other hand, the SCSlag method is preferred to estimate the concentration-time in scenarios with fewer sub-basins and larger areas. For the scenario with 8 sub-basins, a continuity error of 16% was calculated for the 2-year return period, and 11% for the 5-year return period.
Kimia Akhavan, M. Heidarpour, N. Pourabdollah,
Volume 28, Issue 3 (10-2024)
Abstract
One of the ways to improve the characteristics of the hydraulic jump in the stilling basin is to use natural and artificial roughness. Recently, due to the advantages of immersed plates compared to other non-continuous artificial roughness, such as the smaller number of these and the vanes' ability to design their geometry and arrangement, it has been approached more. In this article, the effect of submerged vanes with three contact angles of 45°, 75°, and 90° has been investigated on the improvement of the characteristics of a hydraulic jump and its effect on parameters such as the depth ratio, relative length, energy loss rate, and bed shear force coefficient has been evaluated. The results of this research showed that the average effect of submerged vanes on reducing the depth ratio, jump length, and roller length compared to the classical mode is 9.4%, 24.6%, and 28.4%, respectively and the average relative energy loss is 5.5% compared to the classical state and maximum relative energy loss at the angle of 90 degrees of submerged vanes is 6.5%. Considering these results and other conditions such as ease of construction and use, stabilization, and reduction of economic costs among the available choices of sunken vanes, the angle of incidence of 75° is a suitable option for the optimal design of the stilling basin.
M. Tajsaeid, M. Gheysari, E. Fazel Najafabadi, R. Jafari, E. Seyfipurnaghneh,
Volume 28, Issue 3 (10-2024)
Abstract
Soil moisture is one of the important and determining factors for plant growth, the rate of evaporation and transpiration, and water management in the field. Therefore, its measurement has special importance. The surface soil has a great diversity in soil moisture and different methods were used to measure this property. Due to the problems of contact methods of soil moisture measurement, remote sensing has gained attention because of the possibility of analyzing and monitoring soil moisture on a large and global scale. In this research, satellite data and moisture measured in selected fields located in Hormoaz Abad Plain have been analyzed and compared. Sentinel-2 satellite data have been analyzed using the Google Earth Engine system. The results of this research showed that the use of triple indices in the OPTRAM model to estimate moisture is not very accurate, but the use of the EVI plant index has provided better results than the other two indices.
Sh. Kiyani, T. Rajaee, M. Karamdokht Behbahani,
Volume 28, Issue 3 (10-2024)
Abstract
In this research, the hydraulic parameters of flow have been investigated on SMBF flumes in two simple and multiple modes. In this research, Flow3D software was used for the numerical simulation of SMBF flow. The simulations have been performed in three flow rates (5, 15, and 30 liters per second) and three opening rates (0.075, 0.1, and 0.15 meters). The results showed that when multiple SMBF flumes are used instead of simple SMBF flumes, the maximum velocity increased by 12% on average at a flow rate of 5 L/s, 19% at a flow rate of 15 L/s, and 10% at a flow rate of 30 L/s. The energy consumption of multiple SMBF flumes has been reduced on average by 21% at a flow rate of 5 L/s, by 66% at a flow rate of 15 L/s, and by 122% at a flow rate of 30 L/s compared to simple SMBF flumes. Finally, the observations showed that during the productivity of multiple SMBF flumes compared to simple SMBF flumes, the size of eddies has decreased and the number of eddies and the area of flow turbulence have increased.
S.m. Abtahi, M. Khosroshahi,
Volume 28, Issue 4 (12-2024)
Abstract
Today, wind erosion and dust are an environmental crisis, not just in desert areas but also in the entire country, and putting many costs. The combat against wind erosion in many desert areas by using oil mulches and the cultivation of compatible plants started in the 40s. However, the use of petroleum in addition to mulching the environmental problems, due to the high costs of purchase, displacement, and dispersion, is not economical. Therefore, the performance of non-oil and chemical mulch on dunes was investigated in Kashan. The research on fertilizer application of mulch under a completely randomized design includes: control (no mulch), a polymer mulch, potas, Fars, Paya, and Akrilik at 3 reps (3 sand hills) and the amount of erosion (with the help of the embedded indices in the hills), the survival of plants cultivated in the form of cuttings and seedlings, the percentage of humidity and temperature of each iteration were measured and variance analyses were performed. Field surveys and the results of the statistical analysis showed that the strength resistance of Fars, Paya, and Akrilik is almost the same. Observation of wood indices showed that Fars, Paya, and Akrilik mulches have almost the same strength in terms of wind resistance (almost no wind resistance). Fars mulch after 8 months of spraying showed small fractures due to the loss of flexibility. The study of soil temperature statistics showed that the treatments under mulch had no significant temperature difference compared to the control treatment. A comparison of soil moisture data indicated a high moisture percentage in the potash mulch treatment. The survival rate of cultivated plants was higher in Paya and Akrilik treatments. According to the results, Akrilik, Paya, and Fars mulch are recommended for sand fixation. One of the limitations of research in desert areas is the uncontrollability of environmental and human conditions. So, it is recommended to close the entire mulching area and use a mobile wind tunnel device at the project site to determine the wind slavery at different speeds.
A.r. Vaezi, F. Besharat, F. Azarifam,
Volume 28, Issue 4 (12-2024)
Abstract
The temporal distribution pattern of rainfall can play a role in the production of runoff and soil loss during rainfall. This study investigated four rainfall patterns: uniform, advanced, intermediate, and delayed rainfall under field conditions. The rainfall height in all rainfall patterns was 20 mm. In the uniform rainfall pattern, a constant rainfall intensity (40 mm h-1) was used and in the non-uniform rainfall patterns, a maximum rainfall intensity of 40 mm h-1 was applied for a 15-minute duration. The experiments were carried out in 60 cm × 80 cm plots on a hillslope with a slope gradient of 9% at three replications. Rainfall patterns were set up on the plots in five events with an interval of one week. The results showed a significant difference between rainfall patterns in runoff and soil loss (p<0.01). This difference was due to the destruction of surface soil structure and the reduction of water infiltration rate, especially during peak time of rainfall intensity (40 mm h-1). The highest runoff occurred in the delayed rainfall (3.43 mm) while, the highest soil loss (61.47 g m-2) was observed in the intermediate rainfall, which was associated with the peak intensity of rainfall at the end of the rainfall and its role in the destruction of the soil structure on the one hand, and the loss of infiltration rate on the other hand. Variation of runoff and soil loss from one event to another indicated that soil loss is in line with runoff production in uniform rainfall, while soil loss did not follow runoff in other rainfalls. Soil loss in these rainfalls was affected by both runoff production and availability of erodible soil particles. These results revealed the necessity of studying the rainfall intensity distribution pattern for accurate prediction of soil erosion and determining soil loss variation event by event in the semi-arid region.
M. Ranjbari Hajiabadi, J. Abedi Koupai, M.m. Matinzadeh,
Volume 28, Issue 4 (12-2024)
Abstract
Urban runoff is a serious issue due to urbanization and climate change. Therefore, paying attention to rainfall-runoff simulation models is important to manage and reduce adverse consequences. In this research, the performance of the SewerGEMS software was examined by studying different modes based on the number and area of sub-basins. Two modes, consisting of nine and seventeen sub-basins, were evaluated with varying durations of rainfall of 6 and 12 hours. Additionally, the performance of three methods for calculating concentration time (Kerpich, Brnsby-Williams, Carter) was compared to simulate flood hydrographs in Minab City. The results showed that the total volume of produced runoff in the nine sub-basins was 4% higher than in the seventeen sub-basins. The maximum runoff peak flow in the nine sub-basins was also 20% higher than in the seventeen sub-basins. Furthermore, the Brnsby-Williams method exhibited the least software continuity error among the three calculation methods for concentration time. On the other hand, the Carter method had the highest continuity error. The concentration time calculated by this method in some sub-basins exceeded the 6-hour duration of rain. A t-test was performed to compare the peak discharge data obtained from the Kerpich and Barnesby-Williams methods. The results indicated a significant difference between the data from the two methods at a 95% confidence level (p<0.05). Considering that the Kerpich method is suitable for calculating concentration time in small basins, it was used to compare the nine and seventeen sub-basins. Based on the findings, it was observed that merging the sub-basins and reducing their number from seventeen to nine resulted in an increase in the total volume of produced runoff from approximately 123,839 cubic meters to 128,446 cubic meters, as well as an increase in the maximum peak flow of runoff from about 2.400 m3/s to 2.884 m3/s. This demonstrates an increase in both the total volume and maximum peak discharge of the runoff.
S. Zandi, S. Borumandnasab, M. Golabi,
Volume 28, Issue 4 (12-2024)
Abstract
Quinoa, a nutritionally rich crop with remarkable adaptability to unfavorable environments, exhibits a high tolerance to salinity. Reusing agricultural drainage water is a natural and important method in drainage management that increases farmers' income, sustainable production, and food security. The objective of this study was to investigate the effects of irrigation with agricultural drainage water, salinity stress, and water deficit on the yield and yield components of quinoa (Titicaca) under salinity levels of 2, 10, 15, and 20 dS/m and irrigation levels of full irrigation, 80%, and 60% of the crop water requirements. The experiment was conducted with three replications using a split-plot design with a randomized complete block design (RCBD) at the experimental farm of the Faculty of Water and Environmental Engineering at Shahid Chamran University of Ahvaz, during the fall and spring seasons of the years 2022 and 2023. The water requirement of Qinoa was determined gravimetrically by measuring soil moisture before each irrigation and increasing it to field capacity. The experimental treatments were imposed after seed germination and from the start of cultivation. The plants were harvested and transported to the laboratory for drying and yield component analysis upon physiological maturity. The results revealed that salinity stress had a more pronounced impact on reducing quinoa yield and yield components compared to water stress. The highest and lowest grain yields were observed in the autumn season, reaching 5.45 and 1.8 t/ha under the treatments of S1I1 and S4I3, respectively. Similarly, in the spring season, the highest and lowest grain yields were 3.87 and 0.73 t/ha under the same treatments, respectively.
A. Keshavarz, R. Modarres, S.a.r. Gohari,
Volume 28, Issue 4 (12-2024)
Abstract
This study was conducted to present rangeland bioclimatic zoning for Iran based on the changes in the power spectrum of the average monthly Net Primary Production (NPP) of the rangelands of Iran. Fluctuations of the mean monthly power spectrum of the NPP signal of rangelands of Iran from 2000 to 2022 were analyzed using the Power Spectrum Density (PSD) method in the frequency band between 0-100 Hz. In 24 bioclimatic subzones, there are four common periods in all sites at frequencies of 0 (no change is repeated), 8.34 (3.59 days), 16.66 (1.80 days), and 25 (1.2 days) Hz observed, which shows that the major data changes occur in those periods and that the NPP changes of Iranian rangeland are more influenced by global and regional effects than local effects. The maximum power of these spectra is concentrated in high time scales. Therefore, cycles with lower frequency (higher time scale) are more important than cycles with higher frequency (shorter time scale) and show that the changes of NPP in Iranian rangelands have long-duration cycles under climate fluctuations. In the present research, Iran was classified into 5+1 rangeland bioclimatic zones using the results of the monthly mean power spectrum of the NPP signal of rangelands, the Wards clustering method, and the Euclidean square distance. It seems that this method provides a proper match between biological boundaries and climate. Pearson correlation coefficient was used to investigate the coherence of rangeland bioclimatic regions within each homogeneous group. Correlation results showed a significant spectral density similarity within groups at the significance level of 0.01% between rangeland bioclimatic regions, especially in the second and fifth clusters.
E. Jafari Nodoushan, A. Shirzadi,
Volume 28, Issue 4 (12-2024)
Abstract
The rapid and complex movement of sediments in rivers and coastal areas with highly erosive and unsteady flows presents river engineers with numerous problems in the geomorphology of alluvial rivers. Accurately predicting these complex processes in the water-sediment system (a multiphase, dense, granular flow system) is still a major challenge for mesh-based models. Due to the ability of meshless Lagrangian methods to model large deformations and discontinuities, meshless Lagrangian methods can provide a unique way to deal with this complexity. In the current research, the capabilities of the weakly compressibility moving particle semi-implicit (WC-MPS) model in soil-fluid interaction modeling are developed to enable the modeling of sediment transport and erosion effects behind coastal walls. In this method, granular material is considered a non-Newtonian and viscoplastic fluid. The 𝜇(I) rheological model has been used to predict the non-Newtonian behavior of the granular phase. To verify the application of the present model in simulating the interaction of liquid and solid phases, first, the widely used problem of dam break on an erodible bed was modeled. The NRMSE model was calculated to be approximately 6%, which indicates the efficiency and accuracy of the target model in this problem. At the end, the scouring of coastal walls was simulated by the WC-MPS method using 𝜇(I) rheology model. Investigations show that the processes related to erosion and scouring can be well modeled using the current Lagrangian method. The numerical results show excellent agreement with the laboratory measurements. It should be noted that the mean error of the mentioned model is estimated to be 10%.
T. Mohammadi Arian, G. Rahimi, R. Khavari Farid,
Volume 29, Issue 1 (4-2025)
Abstract
Heavy metal pollution is considered a serious risk to the environment and human health due to its toxicity and indestructibility. Measuring and monitoring little concentration (even lower than the detection limit of the device) in the case of dangerous and biostable pollutants such as cadmium in natural water samples is a necessity. Solid-phase extraction using carbon adsorbents is the most efficient and common method of pre-concentration of heavy metals from environmental samples. The carbon adsorbent used in solid phase extraction must have favorable physical and chemical characteristics, along with low cost and biocompatibility. In this research, Aphanocapsa cyanobacterial cells were used as a cheap precursor to make a microscale absorbent using the hydrothermal method. The qualitative and absorption characteristics of this adsorbent were evaluated using instrumental analysis tests and chemical tests based on cadmium. The absorbent is made in the form of relatively spherical particles (with a size of less than 10 micrometers) with a rough surface and a specific surface area of 382.02 square meters per gram. The efficiency of cadmium absorption of absorbent was in a wide range of pH (3 to 8) and more than 90% due to the buffering effect. The absorbent surface was rich in oxygen and nitrogen functional groups, such as hydroxyl, isothiocyanate, and carbonyl. The cadmium absorption isotherm was the best fit with the Freundlich nonlinear model, and the cadmium absorption rate was the best fit with the pseudo-second-order nonlinear model. The calculation variables related to the Freundlich model, including the inverse of the absorption intensity, showed that the adsorbent has a great tendency to absorb low concentrations of cadmium. Cadmium had the most and least competition for absorption on the adsorbent with alkali metal cations and heavy metal cations, respectively. The resistance of the adsorbent against the increase of ionic strength and the concentration of competing cations was equal to 4 and 20 mg/liter, respectively. The washing efficiency of the adsorbent loaded in the adsorbent-to-solution ratio (1:1000), at a normal concentration of 0.3 and a volume of 160 microliters of detergent (nitric acid), reached its maximum value. According to the findings of this research, the carbon adsorbent originating from the cyanobacterium Aphanocapsa can be an efficient adsorbent to use in the solid phase extraction of cadmium to reduce environmental pollution due to its unique properties.