Search published articles


Showing 353 results for Soi

M. Karamooz, M. Hamidpour,
Volume 22, Issue 1 (6-2018)
Abstract

Siderophores are low molecular weight iron-binding ligands produced by aerobic soil microorganisms and some plants roots. They may also develop complexes with other metals such as Cd, thereby influencing the bio-availability, toxicity and mobility of Cd in the soils and aqueous environments. The main objective of this study was to investigate the effects of desferal siderophore (DFOB) on the adsorption of Cd on muscovite. The adsorption of Cd on muscovite was studied as a function of pH (Cd concentration: 5.0 mg L-1) in the range of 3.0-8.0, as a function of metal concentration (Cd concentration in the range of 1.5-10.0 mg L-1); this was done in the absence and presence of siderophore (DFOB concentration 250 μM) using a 24h batch equilibration experiment. The results of pH dependent experiments showed that the siderophore deceased the adsorption of Cd onto muscovite at pH ≥5. The results of the isotherms experiments also showed that the removal of Cd from solution was affected by siderophore in all equilibrium concentrations of Cd at both pHs. Siderophore decreased the adsorption of Cd by the mineral. The Freundlich and Langmuir isotherms described the equilibrium data satisfactorily. The values of Freundlich (KF) and Langmuir (KL) bonding constants were greater in the suspensions without siderophore, as compared to those containing siderophore, thereby indicating the low adsorption affinity of Cd on muscovite in the presence of the siderophore.

M. Hosseini, E. Adhami, H. R Owliaie,
Volume 22, Issue 1 (6-2018)
Abstract

Cadmium (Cd) is of special importance among heavy metals because its toxicity to the plant is 20 times higher than other heavy metals. The present study was conducted to evaluate the trend of available soil Cd changes over time and its relationship with soil properties. Treatments consisted of 13 soil samples and two Cd rates (12.5 and 25 mg kg-1) as a factorial in a complete randomized design with two replications. DTPA extractable Cd was measured upon 5, 10, 20, 30, 60 and 90 days after adding Cd rates to the soils. The results showed that DTPA extractable Cd was increased as Cd application rates was raised in all soils. DTPA extractable Cd was decreased over time; however, at the end of the experiment, much of the added cadmium to the soil remained in use. Among the soil properties, calcium carbonate showed a significant negative correlation with DTPA extractable Cd in most of the incubation times in both Cd rates. DTPA extractable Cd also showed a significant negative correlation with pH and soil sand and a significant positive correlation with OC. Also, the results of the fitting of cadmium adsorption data with the kinetic equations showed that the exponential function equation was the most suitable kinetics descriptive equation for variations in cadmium adsorption in the studied soils.

A Fararooei, M. Noshadi, S. Amin Sichani,
Volume 22, Issue 1 (6-2018)
Abstract

PCBs are persistent organic pollutants which, due to high environmental hazards, must be traced, determined, and decomposed to reduce their risks. . To detect this material in the soil, the method of extraction and appropriate measuring conditions should be investigated. Two soil samples with two kg weight were selected with two different soil textures and the solutions of soil were made with the 1000 µg/ml aroclor 1254 mixture in a GC device. . Agilent GC-MS with stationary phase (CP 7477) was used to measure aroclor 1254. The analysis of variance and the test of the extraction mean of aroclor 1254 were compared in two soil textures. The results suggested that coarse texture soil (sandy loam) had a higher extract than the fine one (silty loam). The difference was statistically significant (P< 0.01). These findings suggested that the soil texture affected the extraction of aroclor from soil. In addition, four different levels of moisture (5%, 10%, 15% and 20%) produced in two soil textures and aroclor were measured. The highest level of extraction was obtained at 20% moisture, which was significantly higher than that in other levels (P< 0.01). The difference between the mean of extractions in the soil samples with 10% and 15% levels of moisture was non-significant (P> 0.05).

A. R. Vaezi, Y. Mazloom Aliabadi,
Volume 22, Issue 1 (6-2018)
Abstract

Water loss and nutrients loss are one of the important signs of natural resource degradation in the catchments. The amount of loss of these resources is affected by several factors including the characteristics of rainfall. In this study, the data of stream discharge (Q), total dissolve solids (TDS), and total nutrient loss ratio (NR) along with rainfall characteristics were analyzed for the events   from1988 to 2002 in the Tahamchai catchment, which is owned by a regional water company. Moreover, soil properties were determined by soil sampling from different points in the catchment surface. Based on the results, there was a significant correlation between Q of the river and rainfall height (r=0.24, p<0.05), while its correlations with the rainfall intensity and duration were not statistically significant. On the one hand, this result was due to the inverse relationship between rainfall intensity and rainfall duration; on the other hand, due to the temporal variations in vthe egetation cover in the area, it controlled Q in the intensive rainfalls. The highest Q was in spring (1.68 m3 sec-1) and March (2.58 m3 sec-1). In this period, rainfall height was high and the rainfalls interval was short. Moreover, vegetation cover was weak, so it could not control surface runoff and reduce Q in the catchment. TDS and NR also significantly varied during the months and their highest values were observed in December (282.55 mg l-1) and (61.77 mg l-1), respectively. Mg2+ had the highest amount of water loss in the catchment area. A negative correlation was found between Q and TDS (r=0.41, p<0.001) and NR (r=0.31, p<0.001). This study revealed that spring and autumn were the sensitive period for water loss and nutrient loss in the catchment, respectively. Therefore, promoting the vegetation cover in early spring and reducing improper agricultural practices (tillage and fertilization) could be substantial strategies contributing to conserving the catchment’s resources.


N. Abbasi, A. A. Afsharian,
Volume 22, Issue 1 (6-2018)
Abstract

Gypsiferous soils are one of the problematic soils which, due to solubility and contact with water, are a threat to various civil structures, especially water structures. Various factors affect the rate and amount of gypsum particles solubility. Gypsum types, the soil texture, the amount of gypsum in soil, the hydraulic gradient, and temperature and flowing water from gypsum soil are the major factors affecting the quality and quantity of the gypsum solution. In this research, the effects of some peripheral conditions including water temperature and hydraulic gradient on the solubility of gypsum soils were studied. To this aim, samples of gypsum soils were provided artificially by adding various rates of the natural gypsum rock including 0, 5, 10, 20 and 30 percent by weight of clay soil. Then, all gypsum soils were leached under five hydraulic gradients levels including 0.5, 1, 2, 5 and 10. The results indicated that the rate of Gypsum in the soil had a direct effect on the rate of solution in a way that by increasing the percent of Gypsum, the rate of solubility was increased. Also, the rate of leaching (the rate of the derived Gypsum from soil to the primary rate of Gypsum) was decreased by increasing the rate of Gypsum. In addition, by increasing hydraulic gradient, the speed of water and its amount in soil environment within a specified time were raised; further the rate of gypsum was increased too. Also, it was found that the rate of the solubility was increased directly by the temperature. The solubility rate of the gypsum soil at 50 C0 was found to be 2.5 and 1.6 times greater than that of the soil at 5 and 20 C0, respectively.

Y. Abdoli, S. Jafari,
Volume 22, Issue 1 (6-2018)
Abstract

This study was done to evaluate the effect of topography, water table, and irrigation on gypsc soil development and clay mineral diversity in Ram-Hormuz Plain, Khuzestan Province. To localize, 10 profiles in this region that covered all purpose irrigation and topography situation were described. The results showed that the soils could be classified in Entisols, Inceptisols and Aridisols orders. All soil epipedons were ochric and subsurface horizons were cambic, gypsic, and salic. The salic horizons were formed under a low water table. The XRD results showed that smectite, kaolinite, illite, chlorite, palygorskite, vermiculite and sepiolite were the dominant minerals, respectively. Kaolinite and illite were inherited from the parent material, but chlorite was the result of both inheritance and transformation of other clay minerals except uncultivated or non-irrigated soils. Sepiolite was decreased in gypsic horizons, but palygorskite was increased in these horizons. Sepiolite was raised with increasing the depth under the good drainage class; this could be related to neoformation, but it was decreased with depth under the weak drainage class. These results could be due to the instability of this mineral in high moisture and its low Mg activity. There was also a negative correlation correlation between Palygorskite and smectite; this was such that most palygorskite was observed in the surface horizons, but smectite was in the subsurface. Smectite was the dominant clay mineral in the studied soils; it was formed from the weathering of other minerals as well as from neoformed ones in the lowlands. Vermiculite was formed in these soils due to k depletion by leaching or plant absorption. This happened in the illite to smectite transformation process. Therefore, topography and irrigation could be regarded as the main factors putting these soils in high category; also, clay mineral assemblage was different under this situation in these soils.

A. Shabani, A. Jahanbazi, S. H. Ahmadi, M. M. Moghimi, M. Bahrami,
Volume 22, Issue 1 (6-2018)
Abstract

In this study, five infiltration models including Kostiakov, Kostiakov-Lewis, Philip, Soil Conservation Service (SCS) and Horton were fitted to the experimental data using the double rings, and the empirical coefficients of these models were determined. Infiltration experiments were conducted in the gravelly sandy loam soil under and between the olive and orange trees in Fasa city, Fars Province, Iran. The results showed that all five models were fitted accurately to the measured data. The accumulated infiltration under the trees was higher than those measured between two trees. Higher infiltration under the tree canopies was probably due to the higher soil organic matter, the lower soil bulk density, and the tree root channeling, which were more pronounced when compared to the small pores in these soils. Despite the positive effect of sand particles on soil infiltration, the big gravel occurrence in soil would decrease the cross section area of water flow path, thereby reducing the infiltration. Therefore, changing the land use and planting olive and orange trees in the gravel soils would increase the infiltration rate and consequently, decrease runoff and erosion rates in such soils.

Sh. Zand-Parsa, S. Parvizi, A. R. Sepaskhah, A. A. Kamgar Haghighi,
Volume 22, Issue 1 (6-2018)
Abstract

In this study, the values of moisture and soil temperature were estimated at different depths and times under unsteady conditions by solving the Richards’ equation in an explicit finite difference method provided in Visual Studio C#. For the estimation of soil hydraulic parameters, including av and nv (coefficients of van Genuchten’s equation) and Ks (saturated hydraulic conductivity), soil moisture and temperature at different depths were measured by TDR probes and the stability apparatus, respectively. The objective function [equal to Root Mean Square Error (RMSE)] was minimized by the optimization of a parameter separately, using the Newton-Raphson method, while, the other parameters were considered as the constant values. Then, by replacing the optimized value of this parameter, the same was done for other parameters. The procedure of optimization was iterated until reaching minor changes to the objective function. The results showed that soil hydraulic parameters (coefficients of van Genuchten’s equation) could be optimized by using the SWCT (Soil Water Content and Temperature) model with measuring the soil water content at different depths and meteorological parameters including the  minimum and maximum temperature,, air vapor pressure, rainfall and solar radiation. Finally, the measured values of soil moisture and temperature were compared to the depth of 70cm in spring, summer, and autumn of 2015. The values of  the  normalized RMSE of soil water content were 0.090, 0.096 and 0.056 at the  soil depths of 5, 35 and 70 cm, respectively, while the values of the normalized RSME of soil temperatures were 2.000, 1.175 and 1.5 oC at these depths, respectively. In this research, the values of soil hydraulic parameters were compared with other previous models in a wider range of soil moisture varying from saturation to air dry condition, as more preferred in soil researches.

A. Ashraf Amirinejad, S. Ghotbi,
Volume 22, Issue 2 (9-2018)
Abstract

The soil quality is defined as the ability of soil to function as an essential part of the human habitat. In this study, the effects of land use change (conversion of forest lands into agricultural lands) on the soil physical quality were studied in the Gilan-e-Gharb region. For this study, soil samples were collected from surface and subsurface layers of both land uses, and the peak and shoulder slope positions, in Miandar and Vidjanan catchments. Soil physical properties such as soil texture and particle size distribution, soil hydraulic conductivity, bulk density, mean weight diameter of aggregates, water holding capacity, and the soil organic carbon content were measured. The results showed that land use change of the forest to agricultural lands resulted in a sharp decline in the soil organic matter (52%) and an increase in silt and sand percentage and soil bulk density. Also, deforestation decreased the mean weight diameter of aggregates (from 0.39 to 0.14 mm in Miandar) and clay percent.  It caused a reduction in the total porosity followed by a decrease of soil water holding capacity, and a decrease in the saturated hydraulic conductivity (from 10.34 to 1.86 cm/h), as well. In general, the results proved that the land use change from forest to agriculture severely decreased soil physical quality and its productivity.

F. S. Tarighat, Y. Kooch,
Volume 22, Issue 2 (9-2018)
Abstract

The effect of broad-leaved forest trees (Alnus glotinusa, Ulmus glabra, Popolus caspica and Parrotia persica) and their canopy position on soil C and N storage and mineraization in the plain forest areas of Noor was investigated. Soil samples were taken from two positions (near and away from the main stem) with the microplots of 30×30×15 cm. Litter (C and N), soil physical (bulk density, texture and water content), chemical (pH, EC, organic C, total N and available Ca), biochemical and biological (N mineralization and microbial respiration) characteristics were measured at the laboratory. Carbon mineralization rate (CMR) was calculated using the equation [incubation time period (hour) ×soil volume (gr) / CO2 amount (mol C)]. Soil C and N storage (ton/ha) was calculated by C and N contents, bulk density, and the soil sampling depth. The results showed that there was no significant difference between the C storage under the studied tree spcies, whereas N storage presented significantly greater amounts, under Alnus glotinusa (0.79 ton/ha) rather than Ulmus glabra, Popolus caspica and Parrotia persica (0.69, 0.45 and 0.21 ton/ha, respectively). The higher values of soil C (0.001 mol C/kg) and N (0.3 ml N/kg) mineralization were significantly recorded under Alnus glotinusa instead of tree species. Soil C and N storage and mineralization process were not affected by the sampling positions. According to the results, soil C and N storage and mineralization were influenced by litter quality and soil chemistry.

P. Rostamizad, V. Hosseini, K. Mohammadi Samani,
Volume 22, Issue 2 (9-2018)
Abstract

Trees crown can be regarded as main factor contributing to the conservation and support of soil in many ecosystems including semiarid forests in Zagross. The aim of this study was to find out the effect of tree crown of pictachio (Pistacia atlantica Desf) on N, OC, P, pH, EC and the texture of the soil. Soil samples were collected in and outside the crown of 5 single pistachio trees on four directions of each tree in a northern slope from the 0-5 cm depth of soil in the Sarvabad region, Kurdistan. The results of this study showed that the amount of the soil organic carbon was decreased from 6.71% in the soil inside tree crowns to 4.73% in the soils outside the tree canopies. The soil inside trees had a higher concentration of soil nitrogen (0.406%) than the one outside (0.224%) the tree crown; the concentration of phosphorus was measured to be 32.7 mg/kg in the soil inside canopy, while it was 21.1 mg/kg in the soil of outside the tree canopy. EC under the tree crowns was more than that outside the canopy. The results, therefore, showed that soil texture was lighter inside the canopy, as compared to outside; however, the acidity of the soil was not affected by tree crowns and no significant differences were observed in different areas of the crown. Therefore, Persian turpentine trees have positive impacts on the soil properties in Zagros forests and eliminating them will lead to the significant loss of soil fertility and greater soil erosion.

E. Esfandiary Ekhlas, M. Nael, J. Hamzei, A. A. Safari Sinegani, M. Sheklabadi,
Volume 22, Issue 2 (9-2018)
Abstract

Evaluation of the ecological sustainability of different cropping systems is crucial to achieve sustainable agriculture. This evaluation is accessible via soil quality assessment. Therefore, to study the mid-term effects of different conservation tillage systems (no tillage and minimum tillage) and cover cropping on the biological indicators of soil quality, a factorial experiment in a completely randomized block design was conducted in Dastjerd region (Hamedan). Three levels of tillage (NT: no tillage, MT: minimum tillage and CT: conventional tillage) and two levels of cover cropping (C1: Lathyrus sativus and C2: no cover crop) were applied for four consecutive years. Soil sampling was performed in the fourth year of experiment in two steps (1- before cover crop plantation, and 2- after harvesting main crop) with three replications. Most indices (total organic carbon, active carbon, basal respiration, phosphatase activity) were significantly affected by cover crop, tillage systems and sampling time, as the highest values were obtained in NT-C1 in time 2 and the lowest ones in CT-C2 in time 1. For instance, after four years application of treatments, the mean active carbon content was increased from 927 mg/kg in the conventional tillage + no cover crop to 1350 mg/kg in the conservation tillage systems + cover crop. Therefore, conservation tillage practices combined with Lathyrus sativus cover crop were shown to be the most appropriate management for soil quality maintenance and improvement.

A. R. Vaezi, Z. Bayat, M. Foroumadi,
Volume 22, Issue 2 (9-2018)
Abstract

Soil erosion by surface runoff introduced as surface erosion is one of the main mechanisms of land degradation in the hill slopes. Slope characteristics including aspect and gradient can control the differences of soil properties along the hillslope. This study was conducted to investigate the effect of slope aspect and gradient on variations of some soil properties in the short slopes. Five hills including both north and south aspects with different gradients (9-10%,
13-16%, 17-22%, 29-31% and 33-37%) were considered in a semi-arid region with 30 ha in area, in the west of Zanjan, northwest of Iran. The hills were weakly covered with pasture vegetation covers. Soil samples were collected along the slopes from two depths (0-5 cm and 5-15 cm) in four positions with 2 m distance along each slope with two replications. A total of 160 soil samples were analyzed for particle size distribution (sand, silt and clay), gravel and bulk density. Surface erosion was determined based on the variation of grain size distribution and bulk density. Differences of the grain size distribution and surface erosion between the two slope aspects and among the slope gradients were analyzed using the Tukey test. No significant difference was found between slope aspects in surface soil erosion. Nevertheless, surface soil erosion was affected by slope gradient in each slope aspect (R2= 0.78, p< 0.05). Surface erosion in the north slopes was more dependent on the slope gradient, as compared to the corresponding south slopes. In the south slopes, surface erosion was affected by the movement of silt particles from soil surface, while in the north slopes, it was significantly affected by the loss of clay particles.

F. Jahanbakhshi, M. R. Ekhtesasi, A. Talebi, M. Piri,
Volume 22, Issue 2 (9-2018)
Abstract

One of the main sources of runoff in arid and semi-arid mountainous highlands is typically composed of before Quaternary formations. Since the structure and lithology of formations are different, varying formations can have different significance in terms of runoff and sediment. The present study aimed to investigate the sediment production potential and the runoff generation threshold on three formations (Shirkooh Granite, Shale, Sandstone and Conglomerate of Sangestan and Taft Limestone) in Shirkooh mountain slopes. The 60 mm/h rainfall intensity with the 40 minute continuity, according to region rainfall records, and the ability of the rainfall simulator were selected as the basis for the study. Field experiments were conducted in dry conditions based on one square meter plot on rocky slopes with a gradient of 20 to 22 percent and a maximum thickness of 30 cm of soil. The results showed that in 60 mm/h rainfall intensity, the minimum rainfall to produce runoff on Sangestan, Shirkooh and, Taft, was 10, 10.7 and 16.7 mm, respectively. The maximum amount of the sediment was measured on Sangestan, Taft and Shirkooh, respectively. Statistical tests related to runoff and sediment production on all three formations confirmed a significant difference at the 5 % level. In terms of the time required to start runoff, the minimum time was for Sangestan, Shirkooh and Taft, respectively. According to the results, in terms of the potential for runoff generation and sediment production, Sangestan, Shirkooh and Taft can be ranked from high to low levels.

A. Fariabi, H. Matinfar,
Volume 22, Issue 3 (11-2018)
Abstract

One of the problems with the traditional mapping of soils is the expert’s opinion, it time-consuming and timely preparation, and the updating of the maps. While digital soil mapping, using different soil-earth models leads to the simplification of the complexity of the soil system. The purpose of this study was to investigate Soil-Environment Inference (SIE) in soil mapping with an emphasis on using the expert knowledge and fuzzy logic. For this purpose, the digital layer of geology and peripheral layers were derived from a digital elevation model including elevation, slope, and curvature of the ground surface, and auxiliary index, which comprised the input data of the SIE model. Then, the fuzzy maps prepared for the five soil types and the final map of soil prediction were created by hardening. The results showed that the SIE model, which used environmental variables, had a high ability to isolate soil types with more detailed compositions of soils with different maternal materials. The comparison of the error matrix showed that the overall accuracy of the derived map of the SIE model was equal to 75%, and the matching of the digital mapping results with conventional mapping accounted for 74.71% of the results. The difference in the compliance rate could be attributed to the difference in the nature of the two methods.

M. Shirmohammadi, A. R. Hossein Pour, Sh. Kiani,
Volume 22, Issue 3 (11-2018)
Abstract

Understanding the distribution of different P forms in soil aggregate fractions is important in evaluating the risk of P run-off and leaching in the agricultural soils. The objective of the present research was to determine the effect of aggregate size on soil phosphorus availability and fractionation in 10 calcareous soils. Micro aggregate (< 0.25 mm), macro aggregate (> 0.25 mm) and whole soil were separated by dry sieving. Olsen P, total P, organic P, and inorganic P fractions in micro aggregate, macro aggregate, and whole soil were determined. Soil inorganic P fraction was  determined by a sequential extraction procedure including: dicalcium phosphate (Ca2-P), octa calcium phosphate (Ca8-P), apatite (Ca10-P), P absorbed by Al oxide (Al-P), P absorbed by Fe oxide (Fe-P) and P incorporated in to Fe oxide (O-P). The results showed that the amounts of (Olsen P), (Ca2-P), (Ca8-P), (Ca10-P), (Organic P), (Al-P), (Fe-P), (O-P) and (Total P) in 70, 60, 40, 40, 60, 70, 60, 50 and 70 percent of soils, respectively, in the micro aggregates were significantly higher than those of the macro ones. Finally, by increasing the P content, particularly the smaller sized aggregates, it was likely that the eroded material would favor greater P loss.

R. Darabi Kandlaji, Shahin Oustan, Nasser Aliasgharzad, N. Najafi,
Volume 22, Issue 3 (11-2018)
Abstract

Nitrification is one of the most active biological processes in the soils receiving ammonium nitrogen. The rate of this process is under the influence of several factors and their interactions. In this study, the effects of ammonium concentration and moisture content on the extent of nitrification in two soil samples named A (Loam) and B (Clay loam), which had been taken, respectively, from Marand and Ahar areas, were investigated. A two-week factorial incubation experiment (25±0.5°C) was conducted in a completely randomized design with three replications. Factors were urea nitrogen at five levels (0, 50, 100, 200 and 400 mg N kg-1), moisture content at three levels (0.55FC-0.60FC, 0.75FC-0.80FC and 0.95FC-FC) and two soil types (A and B). At the end of the experiment, concentrations of ammonium and nitrate as well as the values of pH and EC were determined. Based on the results, average nitrification at 0.55FC-0.60FC was 22 percent lower than that at 0.95FC-FC and no significant difference was observed between 0.75FC-0.80FC and 0.95FC-FC. Nitrification at the treatment of 400 mg N kg-1and 0.55FC-0.60FC was decreased considerably and 25 percent of the added ammonium was accumulated. The average ammonium concentrations did not significantly vary among the levels of 50, 100 and 200 mg N kg-1, but these concentrations were significantly lower than those of 400 mg N kg-1. Moreover, EC and pH values of the soils were significantly increased and decreased in response to the nitrification (0.54 dS m-1 and 0.59 at the application level of 200 mg N kg-1, respectively). On average, the results showed higher nitrification (40.3 mg N kg-1) in the soil A (Loam texture) than the soil B (Clay loam).

A. R. Vaezi, . M. Bagheri, K. Afsahi,
Volume 22, Issue 3 (11-2018)
Abstract

Soil erosion by water is a serious environmental problem, particularly in semi-arid regions. In these areas, water loss strongly affects soil loss as well as soil productivity in the rainfed lands. Determination of appropriate seed density for each tillage direction is vital to achieve high crop yield and to prevent soil and water losses. This study was conducted to investigate the combined effects of tillage direction and plant density on the soil and water losses in a rainfed land. Twelve crop plots with the dimensions of 1.5 m × 5 m were installed to investigate the effect of two tillage directions (up to the down slope and on the contour line), two seed densities (90 and 120 kg h-1), a three replications in a rainfed land with 10% slope steepness. Soil and water losses were measured in each plot during the wheat growth period (from October 2015 to June 2016). Significant differences were found between both tillage direction and plant density in the runoff (P<0.05) and soil loss (P< 0.001). Runoff and soil loss in the up to down slope tillage was 4.16 and 4.08 times bigger than the contour line tillage, respectively. Runoff and soil loss with the seed density of 120 kg h-1­ ­­were 11.25 and 26.32% lower than those with 120 kg h-1­, respectively. This result was associated with the increased cover crop and its control on water flow and the enhancement of water retention in the soil. There was no significant interaction between tillage direction and plant density in the runoff and soil loss. The importance of tillage direction in the soil and water loss was very larger than that of the plant density. The application of 120 kg ha-1 seed density on the contour line could, therefore,   considerably prevent soil and water losses in the rainfed lands.

B. Farid Giglou, R. Ghazavi,
Volume 22, Issue 3 (11-2018)
Abstract

In this research, a regression model was introduced to study the mechanisms of the formation of gullies in the Quri Chay watershed, northern Ardebil province (Moghan Plain); this was done through investigating the effective factors of geo-environment and soil characteristics on the gully erosion. For this purpose, 17 gullies were randomly assigned through field surveys. Mapping and recording the morphometric of the selected gullies were performed by GPS positioning after seven rainfall events. The catchment-upper area of each gully was determined and its related physical parameters were calculated in order to investigate the effect of the physical characteristics of the catchment. Soil sampling was also done at the head of each gully at two different depths (30-30 and 60-30 cm) in order to determine the physical and chemical characteristics of the soil. According to measurement of the morphometric characteristics of the gully and soil characteristics through multivariate analysis of the data, a suitable regression model was developed for the longitudinal development of erosion after determining and calculating environmental factors related to the upper catchment of the gullies. The results of the correlation matrix between the longitudinal extension of the gully and the factors investigated indicated that the factors related to the physical characteristics of the beside watershed (area, perimeter, main stream length and average width of the catchment, main stream slope), gully morphometric characteristics (mean of gully cross section, the gully expansion area, and the gully average width) and soil characteristics (geometric mean of the aggregates diameter, lime, organic matter percentage) affected  the formation and expansion of gully erosion in the Quri chay catchment. The results of regression analysis showed that the longitudinal expansion of the gully was mostly influenced by the area around each gully and the percentage of organic matter, which resulted in pressure on the rangeland and the loss of vegetation, which increased runoff and accelerated the lengthwise expansion of the gully. Also, the  increase in the area of the beside catchment the gullies is known as one of the factors influencing the length of the gully, due to the high volume of runoff entering the head cut section; so it is necessary to manage  runoff in the gully with the large beside catchment.

A. Cheraghi Tabar, E. Adhami, H. R. Owliaie,
Volume 22, Issue 4 (3-2019)
Abstract

The present study was conducted to evaluate zinc availability and forms, as well as their relationships with soil properties in some soil samples of Kermanshah and Ilam provinces. Sequential extraction included Mg(NO3)2 (soluble + exchangeable), NaOAc pH = 5 (carbonatic fraction), Na-hypochlorite at pH = 8.5 (organic fraction), hydroxylamine hydrochloride at pH 2 (Mn oxides associated Zn), hydroxylamine hydrochloride (amorphous Fe oxides associated Zn), ammonium oxalate (crystalline Fe oxides associated Zn), and HNO3 (the residual Zn). DTPA-Zn was in the range of 0.34-3.7 mg/kg. The results showed that soluble+ exchangeable, Mn oxides and crystalline Fe oxides associated Zn were not detectable by atomic absorption. Distribution of Zn fractions was in the order of Organic-Zn < Car-Zn < amorphous Fe oxides-Zn < Res-Zn. Organic matter bound Zn and amorphous Fe oxides associated Zn and the residual fractions showed a significant negative correlation with the calcium carbonate equivalent. It seemed s that calcium carbonates were the major factor in controlling the Zn content in the studied soils.


Page 13 from 18     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb