Search published articles


Showing 49 results for Discharge

A. Rezaei Ahvanooei, H. Karami, F. Mousavi,
Volume 23, Issue 3 (12-2019)
Abstract

In this research, by using FLOW3D, the performance of non-linear (arced) piano key (PKW-NL) in plan and linear piano key weir (PKW-L), with equal length of weir, was compared. Results showed that nonlinearity of the weir caused 20% increase in the discharge coefficient. Investigating the velocity contours for these two weir models also showed that maximum velocity within the PKW-NL weir structure is about 30% lower than the PKW-L weir. Also, the performance of non-linear piano key weir was evaluated under inward (PKW-IC) and outward (PKW-OC) curvatures to the channel. Results showed that in the case of PKW-IC weir, the discharge coefficient was increased by 8% as compared to the PKW-OC weir. Investigating the pressure contours for these two weir models also shows that the average pressure within the PKW-IC weir structure is about 5% higher than the PKW-OC weir. This increase in pressure leads to a decrease in the speed and better distribution of flow over the weir keys.

S. Nikkhoo Amiri, M. Khoshravesh, R. Norooz Valashedi,
Volume 23, Issue 4 (12-2019)
Abstract

Today, the rising surface temperature of the planet and its effects on the water cycle have attracted the attention of many researchers. The aim of this study was to investigate the effect of climate change on the Tajan (the upstream of Shahid Rajaei dam) catchment area. In order to study the output of CanESM2 model, the SDSM method was used to estimate the magnitude of the data. Flow discharge changes in Shahid Rajaei Dam were simulated using the weather data of Kiasar synoptic station and the temperature and precipitation changes were simulated using the climate scenarios of RCP2.6 and RCP8.5 for the 2016-2066 period. Also, the effect of different scenarios on the outflow of the Soleiman Tangeh hydrometric station was evaluated by SWAT hydrologic model. The results showed that the annual precipitation would be decreased by 58% and the air temperature would be increased by 14% under RCP2.6 scenario. Also, in the RCP8.5 scenario, precipitation would be decreased by 59.5% and the temperature would be increased by 21%. Peak discharge for RCP2.6 and RCP8.5 scenarios would be increased by 4% and 5.7%, respectively, and the average annual discharge might be decreased by 16% and 16.5% in the future period (2016-2066). Therefore, it can be planned by the investigation of conditions for cropping patterns in the downstream to consider the environmental impacts for future periods.

R. Gharibvand, M. Heidarnejad, H. A. Kashkouli, H. Hasoonizadeh, A. Kmanbedast,
Volume 24, Issue 1 (5-2020)
Abstract

The flow fields over a trapezoidal labyrinth weir (two-cycle) and a piano key weir were simulated using Flow3D, studying the impact of each model on the flow field in the weirs and the coefficient of discharge in comparison with the available experimental data. Moreover, the models were investigated experimentally in a 12.5 m long, 0.3 m wide, and 0.4 m high rectangular flume under clear-water conditions. The results showed good agreement between the data from the numerical and experimental models. The piano key weirs had a higher coefficient of discharged compared with labyrinth weirs. The coefficient of discharge was observed to increase by 26 percent as the height of the PKW was increased by 50 percent (from 5 to 7.5 cm). This increase was 24 percent for labyrinth weirs.

N. Sadeghian, A. Vaezi, A. Majnooni Heris,
Volume 24, Issue 1 (5-2020)
Abstract

Few studies have been done regarding the role of the raindrop in the hydrodinamic mechanism of soil erosion. In this study, rainfall simulation experiments were conducted to evaluate the role of raindrop in runoff discharge, sediment concentration and hydraulic properties of flow under four slope gradients (5, 10, 15 and 20%) in a clay soil using a 90 mm.h-1 rainfall intensity to reach the steady state flow. Soil sample was packed into the erosion flume with 0.3m× 0.4m × 4 m in dimensions and tested under two soil surface conditions:  one with raindrop impact and one without raindrop impact. The results showed that runoff discharge, sediment concentration, flow depth, shear stress, stream power, Reynolds number and runoff velocity under without raindrop impact condition were significantly lower than those in the condition  with the raindrop impact with a factor of 0.62 to 3.54, 0.08 to 11.83, 0.91 to 0.96, 0.26 to 3.25, 0.52 to 4.45, and 0.36 to 3.27, 0.23 to 0.79 times, respectively; on the other hand, the Darcy Wysbach, Chezy and Manning coefficients were increased significantly under without raindrop impact (P<0.01). Flow velocity was the key hydraulic parameter strongly affecting the hydraulic properties. These findings indicated the importance of raindrop impact in the detachment rate of soil particles through the change of the hydraulic characteristics. This study also revealed the key role of raindrop impact on the runoff hydraulic characteristics, as well as particle detachments rate in rills. Information about the role of raindrop impact is a substantial step in modeling the rill erosion. Therefore, elimination of raindrops impact, especially in the steep slopes, with the conservation of natural vegetation cover can sufficiently prevent runoff production as well as the particle detachment rate.

P. Heidarirad, A. A. Kamanbedast, M. Heidarnezhad, A. R. Masjedi, H. Hasoonizadeh,
Volume 24, Issue 1 (5-2020)
Abstract

Water supply at a desired rate at any time to meet the water requirements regardless of river discharge must be considered in the general design of intakes provided that the needs do not exceed the river flow. Due to the lack of necessary information in this field and the importance of sediment transport to the lateral intakes at river bends, this study aimed at understanding the mechanism of this phenomenon. To this end, the combined effect of convergence and divergence in lateral intakes on the sediment transport was investigated. According to the results, the diversion discharge to the intake was increased by converging the laboratory flume. By narrowing and converging the end of the flume, the diversion discharge was increased further, so that as the flume was converged to the size (b/B) of 0.75 and 0.5, the diversion discharge to the intake was increased by 13.6% and 75%, respectively. This could be connected to narrowing, flow obstruction and backflow to the intake. In contrast, different results were found by diverging the flume. In other words, the inflow to the intake was decreased by diverging the flume. As the flume end was diverged, the diversion discharge was decreased further. By diverging the flume to the size (b/B) of 0.75 and 0.5, the diversion discharge to the intake was decreased by 21.9 and 31.8%, respectively. The average diversion discharge to the intake at 30, 60 and 90º was 13.2, 15.2 and 11.5%, respectively. By converting the flume to the size (b/B) of 0.75 and 0.5, the diversion sediment to the intake was increased by 18.5 and 71.4%. In contrast, by diverging the flume to the size (b/B) of 0.75 and 0.5, the diversion sediment to the intake was decreased by 35.4 and 49.9%, respectively.

M. Khast, M. Hesam, A. Hezarjaribi, O. Mohamadi,
Volume 24, Issue 1 (5-2020)
Abstract

Due to the increasing number of small crops, the system of irrigation without a pump can be an economical way. Therefore, in this research, the effects of the type of droplet and the height of water supply system utilization on the characteristics of water distribution (discharge, dispersion uniformity coefficient (CU) and coefficients of variation of discharge) were investigated. In this research, the pressure functions of 1, 2, 3 and 4 meters and three irrigation repeats were investigated; also, the discharge characteristics of jet pots of 2 and 8 nozzles, easy dripper and netafim were addressed. The results indicated that at 1 m pressure, drippers of pots of 2 and 8 nozzles with the uniformity coefficients of distribution were equal to 89.39 and 99.30%, and the discharge rate was 3.60 and 3.62 liters per hour at a pressure of 2 m. An easy-drain drip with a discharge rate of 3.85 L / h and a uniform distribution of 99.44%, at a height of 3 and 4 m, the droplets of the netafim with an outlet discharge were 3.87 and 3.97 liters per hour and the uniformity coefficients of 99.32 and 99.47 percent had the best broadcast conditions. According to these significant differences (P <0.05), it can be concluded that at pressures less than 2 m of jar droplets and at more than 3 m, netafim and Easy Dipper types could  have better leakage due to pressure regulators. In general, each of the four types of emitters produced a uniform dispersion and the optimum discharge at different pressures.

A. Alizadeh, B. Yaghoubi, S. Shabanlou,
Volume 24, Issue 2 (7-2020)
Abstract

In this study, the discharge coefficient of sharp-crested weirs located on circular channels was modeled using the ANFIS and ANFIS-Firefly (ANFIS-FA) algorithm. Also, the Monte Carlo simulations (MCs) were used to enhance the compatibilities of the soft computing models. However, the k-fold cross validation method (k=5) was used to validate the numerical models. According to the input parameters, four models of ANFIS and ANFIS-FA were introduced. Analyzing the numerical results showed that the superior model simulated the discharge coefficient as a function of the Froude number (Fr) and the ratio of flow depth over weir crest to the weir crest height) h/P(. The values of the mean absolute relative error (MARE), root mean square error (RMSE) and correlation coefficient (R) for the superior model were calculated 0.001, 0.002 and 0.999, respectively. However, the maximum error value for this study was less than 2%. 

R. Daneshfaraz, M. Sattariyan Karajabad, B. Alinejad, M. Majedi Asl,
Volume 24, Issue 4 (2-2021)
Abstract

The scour around the bridge piers is one of the main causes of bridge failure and the extraction of aggregates may aggravate this phenomenon. The present study comprehensively investigated the scour around the groups of bridge piers in the presence of aggregate extraction pits, using different discharges. The bridge piers roughened by gravel had been compared with the simple bridge piers; so, the results showed that the roughening caused the reduction of the scour depth. Scour depth change rate led to an increase in the equilibrium time. The results also showed that the reduction of the scour depth at the downstream groups of piers was more than that in the upstream. For the lowest discharge, the aggregate extraction pits had a considerable effect on the scour depth difference for the groups of piers in the downstream and upstream. On the other hand, the effects were decreased when the rate of discharge was increased. The experimental results obtained by the rough surface models showed that as the discharge was increased, the local scour was increased too; at the same time, the bed profile was posed at the low level. Generally, the scour depth of the groups of piers in the downstream of the extraction pit was more than that in the upstream. The results of the current research, therefore, demonstrated that the surface of the bridge pier roughened by gravel reduced the scour depth.

M. Alinezhadi, S. F. Mousavi, Kh. Hosseini,
Volume 25, Issue 1 (5-2021)
Abstract

Nowadays, the prediction of river discharge is one of the important issues in hydrology and water resources; the results of daily river discharge pattern could be used in the management of water resources and hydraulic structures and flood prediction. In this research, Gene Expression Programming (GEP), parametric Linear Regression (LR), parametric Nonlinear Regression (NLR) and non-parametric K- Nearest Neighbor (K-NN) were used to predict the average daily discharge of Karun River in Mollasani hydrometric station for the statistical period of 1967-2017. Different combinations of the recorded data were used as the input pattern to predict the mean daily river discharge. The obtained esults  indicated that GEP, with R2= 0.827, RMSE= 59.45 and MAE= 26.64, had a  better performance, as compared to LR, NLR and K-NN methods, at the  validation stage for daily Karun River discharge prediction with 5-day lag, at the Mollasani station. Also, the performance of the models in the maximum discharge prediction showed that all models underestimated the flow discharge in most cases. 

A. R. Bahrebar, M. Heidarnejad, A. R. Masjedi, A. Bordbar,
Volume 25, Issue 2 (9-2021)
Abstract

The combination of a labyrinth weir with an orifice is a proper solution for floating material to pass over the weir and transfer sediment through the orifice. Additionally, creating a slot in the overflow wing leads to higher discharge. This study examined four discharges (5, 10, 15, and 20 liters per second) with channel width and height of 30 and 40 cm in trapezoidal-orifice, square-orifice, and triangular-orifice labyrinth weirs in the laboratory and using Flow3D with RNG k-epsilon (k-ε) turbulence model, the results were compared with one another. Comparing the discharge flow over weirs and measuring the discharge coefficient among the mentioned models showed that the triangular-orifice labyrinth weir had the highest discharge rate. Moreover, the increased Ht/P ratio (Ht represents total hydraulic head; P denotes weir height) for all models resulted in the increased discharge coefficient. Due to the efficiency of this type of weirs, the highest discharge coefficient was obtained at low Ht/P ratios. At lower ratios, since there was free flow, the coefficient of weir discharge increased, and as the ratio increased, the weir was partially submerged. Furthermore, for the weir design, the best Ht/P ratio was between 0.13 to 0.41, and the maximum discharge coefficient (Cd = 1.2) was within this range.

J. Meshkavati Toroujeni, A.a. Dehghani, A. ٍemadi, M. Masoudian,
Volume 25, Issue 3 (12-2021)
Abstract

One of the crucial problems that exist in the irrigation networks is the fluctuation of the water surface flow in the main channel and changes in the flow rate of the intake structure. One of the effective methods to decrease these fluctuations is increasing the weir crest length at the given width of the channel with the use of the labyrinth weirs can be achieved for this purpose. The labyrinth weir is the same linear weir that is seen as broken in the plan view. In this study, a labyrinth weir with a length of 3.72 m, three different heights of 15, 17, and 20 cm, three different shapes of dentate (rectangular, triangular, and trapezoidal), and a linear weir were used in a recirculating flume with 15 m length and 1 m width. The result showed that for a given length and height of weir, with the increasing of the upstream water head to the weir height ratio (), the discharge coefficient decreases. The results showed that by increasing weir height, the discharge coefficient decreases for a given length of the weir. Linear weir and labyrinth weir without dentate create more water depth at the upstream by 3.3 and 1.2 fold compared with dentate labyrinth weir.

H. Elahifar, O. Tayari, N. Yazdanpanah, M. Momeni,
Volume 25, Issue 4 (3-2022)
Abstract

The discharge coefficient of labyrinth weirs increases with increasing the crest length in a certain width range. The present research was carried out in a laboratory flume with a length of 8 m, a width of 0.6 m, and a height of 0.6 m. The discharge coefficient of two-cycle symmetric and asymmetric rectangular labyrinth weirs was experimentally measured. The dimensional analysis by the Buckingham π theorem indicated that the discharge coefficient was dependent on Se, B/Wavg, Ht/P, and WL/WR. According to the results, the discharge coefficient decreased with increasing the hydraulic head in the symmetric and asymmetric labyrinth weirs and the linear weir. Asymmetric labyrinth weirs with a WL/WR of 2.05 outperformed symmetric labyrinth weirs with a WL/WR of 1. Quantitatively, the discharge coefficient of the labyrinth weir with a B/Wavg of 3.1 was respectively 21% and 94% higher than that with a B/Wavg of 2.93 and 2.76. The discharge coefficient of the labyrinth weir with a WL/WR of 2.05 was 10-27% higher than that with a WL/WR of 1. The discharge coefficient of the linear weir was 60-250% higher than that of labyrinth weirs.

K. Ghaderi, B. Motamedvaziri, M. Vafakhah, A.a. Dehghani,
Volume 25, Issue 4 (3-2022)
Abstract

Proper flood discharge forecasting is significant for the design of hydraulic structures, reducing the risk of failure, and minimizing downstream environmental damage. The objective of this study was to investigate the application of machine learning methods in Regional Flood Frequency Analysis (RFFA). To achieve this goal, 18 physiographic, climatic, lithological, and land use parameters were considered for the upstream basins of the hydrometric stations located in Karkheh and Karun watersheds (46 stations with a statistical length of 21 years). The best Probability Distribution Function (pdf) was then determined using the Kolmogorov-Smirnov test at each station to estimate the flood discharge with a return period of 50-year using maximum likelihood methods and L-moments. Finally, RFFA was performed using a decision tree, Bayesian network, and artificial neural network. The results showed that the log Pearson type 3 distribution in the maximum likelihood method and the generalized normal distribution in the L moment method are the best possible regional pdfs. Based on the gamma test, the parameters of the perimeter, basin length, shape factor, and mainstream length were selected as the best input structure. The results of regional flood frequency analysis showed that the Bayesian model with the L moment method (R2 = 0.7) has the best estimate compared to other methods. Decision tree and artificial neural network were in the following ranks.

A. Kasra, A. Khosrojerdi, H. Babazadeh,
Volume 26, Issue 1 (5-2022)
Abstract

Abstract
The objective of the present research was to investigate the flow properties through the bottom outlet of the Nesa dam based on numerical and experimental studies. 22 piezometers were employed to measure the static pressure through the experimental model. The bottom outlet section was divided into three blocks to measure the endangered region. The graph of cavitation numbers was plotted for different flow discharge and cavitation damage levels to compare with a safe zone to find out the areas with a high risk of cavitation. The results illustrate that block No. 1 cavitation index is located at the “possible cavitation” damage. The studies showed that the cavitation index is the dependent parameter with the height of the water at the upstream reservoir. Furthermore, for block No. 2, the level of cavitation ranged from x/L = 0.44 to 0.90 and the cavitation level is related to the velocity, and by increasing the velocity to 16 m/s, the threat of the cavitation and its consequences is raised, dramatically. Regarding block No.2 and 3, the cavitation through this block depends on the negative pressure since the negative values of the cavitation index is related to the negative static pressure and it is assumed that the negative pressure can reach the threat of major damage. Also, a comparison between different numerical turbulence models illustrates that the k-ε RNG with fine mesh showed less error with experimental values which causing the numerical model with this condition to reach an appropriate agreement between numerical and experimental simulations.
M. Sabouri, A.r. Emadi, R. Fazloula,
Volume 26, Issue 2 (9-2022)
Abstract

A compound sharp-crested weir is often used to measure a wide range of flows with appropriate accuracy in open channels. In this study, experiments were performed to investigate the hydraulic flow through a compound weir of circular-rectangular with changes in hydraulic and geometric parameters in free and submerged flow conditions. The characteristics of the weirs include rectangular spans width of 39 cm, a circular radius of 5, 7.5, and 12.5 cm, and heights of 10 and 15 cm. The results showed that by increasing the radius and height of the Weir, upstream water depth increases around 28.4%. At a constant h/p, the discharge coefficient increases with the increasing radius of the circular arc. Also, in the submerged conditions, the discharge coefficient is less (around 40%) than in the free flow condition, which is due to the resistance of the depth of the created stream against the passage of the flow.

T. Mohammadi, V. Sheikh, A. Zare,
Volume 26, Issue 4 (3-2023)
Abstract

Trend analysis of stream flow provides practical information for better management of water resources on the eve of climate change. Therefore, the present study investigated river flow variations during three decades as well as projections of future discharge in the Gorganrood watershed. The Man-Kendall method has been used to detect the trend and methods of Pettitt, SNHT, and Buishand to identify points of a sudden change in discharge time series in 8 stations of Aq Qala, Galikesh, Gonbad, Haji Ghoshan, Nodeh, Ramyan, Sadgorgan, and Tamar. The Mann-Kendall trend test showed the existence of a significant negative trend (flow reduction) on a daily and annual scale in all stations. Monthly, the strongest negative trend in Aq Qala, Galikesh, Gonbad, Haji Ghoshan, and Ramyan stations was related to July, but in Nodeh and Tamar stations, it was related to August and February, respectively. A decreasing trend was observed in all stations on a seasonal scale, but this trend was not significant in some seasons. The results of the analysis of change points in discharge showed that the change points in the data used in this study are more of a decreasing and in some cases incremental type and some stations, no change points have been identified at all. Therefore, the number of decreasing changes in the studied hydrometric stations is significantly higher than the incremental changes and is more visible from 1993 to 1997 and 2005-2007 in three and four stations, respectively. Also, the most incremental changes among the stations are related to the Aq Qala station in 2017 with a flow rate of 234 cubic meters per second. Investigation of the flow of the basin in the past decades showed significant monotonic and abrupt changes which are mostly toward decreasing the basin’s discharge. The downward trend in discharge values at different time scales for all hydrometric stations of the Gorganrood watershed, which will be more severe in the future due to global climate change, and increasing the region's water needs for various future use due to population growth and the expansion of industries can also be considered as a serious warning for policymakers, planners, and local managers to prevent a possible water crisis in the region in the future with proper planning.

S. Salehi, A. Mahmoodi Moghadam,
Volume 27, Issue 2 (9-2023)
Abstract

The present study investigated the related parameters to decrease the seepage through homogenous and heterogeneous earth dams by employing experimental models and solutions. Two heterogeneous earth dam models with vertical clay cores were considered to illustrate the effect of the electrokinetic application on the time failure factor. The seepage lines were measured along the longitudinal section from the heel to the toe using the observation wells by adjusting the electrodes of the electrokinetic application through the vertical clay core. The initial comparison expounds that adjusting the electrokinetic approach can decrease the level of the seepage line due to depleting water by considering horizontal drainage. Furthermore, the failure time was increased by 18 percent due to inputting the voltage in the clay content. The results indicated that the models with an electrokinetic approach were stabilized more than the ones. The hydrographs of the flow discharge were measured along the experimental tests to investigate the effect of electrokinetics with and without electrodes in 10 and 20 clay percent of the dam soil content. Results indicated that employing the electrokinetic application due to increasing clay content caused the effect of the electrokinetic was significantly increased and it caused the discharge flow reduced of 32 percent.

M. Majedi Asl, T. Omidpour Alavian, M. Kouhdaragh, V. Shamsi,
Volume 27, Issue 3 (12-2023)
Abstract

Non-linear weirs meanwhile economic advantages, have more passing flow capacity than linear weirs. These weirs have higher discharge efficiency with less free height upstream compared to linear weirs by increasing the length of the crown at a certain width. Intelligent algorithms have found a valuable place among researchers due to their great ability to discover complex and hidden relationships between effective independent parameters and dependent parameters, as well as saving money and time. In this research, the performance of support vector machine (SVM) and gene expression programming algorithm (GEP) in predicting the discharge coefficient of arched non-linear weirs was investigated using 243 laboratory data series for the first scenario and 247 laboratory data series for the second scenario. The geometric and hydraulic parameters were used in this research including the water load (HT), weir height (P), total water load ratio (HT/p), arc cycle angle (Ɵ), cycle wall angle (α), and discharge coefficient (Cd). The results of artificial intelligence showed that the combination of parameters (Cd, H_T/p, α, Ɵ) respectively in GEP and SVM algorithms in the training phase related to the first scenario (Labyrinth weir with cycle wall angle 6 degrees) were respectively equal to (R2=0.9811), (RMSE=0.02120), (DC=0.9807), and (R2=0.9896), (RMSE=0.0189), (DC=0.9871) in the second scenario (Labyrinth weir with a cycle wall angle of 12 degrees) it was equal to (R2=0.9770), (RMSE=0.0193), (RMSE=0.9768), and (R2 = 0.9908), (RMSE = 0.0128), (DC = 0.9905), which compared to other combinations has led to the most optimal output that shows the very favorable accuracy of both algorithms in predicting the coefficient the Weir discharge is arched non-linear. The results of the sensitivity analysis indicated that the effective parameter in determining the discharge coefficient of the arched non-linear Weir in GEP and in SVM is the total water load ratio parameter (HT/p). Comparing the results of this research with other researchers revealed that the evaluation indices for GEP and SVM algorithms of this research had better estimates than other researchers.

S. Barani, M. Zeinivand, M. Ghomeshi,
Volume 27, Issue 4 (12-2023)
Abstract

In this study the effect of orifice number and dimensions in combined structure sharp crested rectangular weir with multiple square orifice was investigated. For this propose, some experiments in different flow rate, different orifice number and dimensions were done. The results showed that by different orifice numbers and dimensions, flow discharge increased at the same upstream flow head. This increasing trend was observed in all numbers and dimensions of the investigated experiments. The analysis of the quantitative results showed that by increasing the number of orifices, the discharge rate through the combined structure of weir-orifice was increased on average 2.06 liters per second and by increasing each centimeter of orifice dimensions, the discharge was increased by 2.82 liters per second. Also by calculating the percentage of flow rate increase, it was observed that by adding the orifice number, it increases by 18.7% and by increasing the size of the orifice by one centimeter, the flow rate increases by 28.1%.

E. Karamian, M. Navabian, M.h. Biglouei, M. Rabiei,
Volume 28, Issue 1 (5-2024)
Abstract

Cultivation of rapeseed as the second crop requires drainage systems in most of the paddy fields of the Guilan province. Mole drainage, as a low-cost and shallow drainage method that is suitable for rice cultivation conditions and easier to implement than pipe drainage, can be a solution in the development of second-crop cultivation. The present study was conducted to evaluate the drainage of mole drainage and nitrogen fertilizer management on the quantity and quality of drainage at Guilan University. In this regard, an experiment was conducted under two treatments including drainage and nitrogen fertilizer (i.e. traditional mole drainage and sand-filled mole drainage), and 180 and 240 kg of nitrogen fertilizer per hectare in three replications. After each rainfall during the plant growth period, water samples were taken from the drains, and parameters of electrical conductivity, pH, total suspended solids, total phosphorus, turbidity, concentrations of ammonium, chloride, nitrite, nitrate, and phosphate were measured. Also, the outflow from the drains and the water table level were measured by piezometers during the rain and after that. The results of the mean comparison of pH and total suspended solids showed that most of them were obtained with 7.49 and 281.25 mg/liter, respectively, in the mole drain filled with sand and the traditional mole drainage and 180 fertilizer treatment. The highest mean of electrical conductivity and turbidity was observed as 651 micro mohs/cm in the traditional mole drainage and 240 fertilizer treatment and with 67.76 NTU in the traditional mole drainage and 180 fertilizer treatment. The statistical analysis showed that the effect of drainage treatment on the amounts of ammonium, nitrite, nitrate, phosphate, and total phosphorus was not significant. The outflow from the traditional mole drainage was 49% lower than the sand-filled mole drainage. The traditional and sand-filled mole drains were able to drain excess water with average reaction coefficients of 0.8 and 0.83 per day during the growth period, respectively. Considering the speed of water discharge, drain discharge, and the main non-significance of qualitative parameters among drainage treatments, mole drainage filled with sand is recommended for the development of rapeseed cultivation in paddy fields.


Page 2 from 3     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb