Search published articles


Showing 26 results for Tillage

A. Ghasemi, A. Ghanbari, B. A. Fakheri, H. Fanaie,
Volume 21, Issue 3 (11-2017)
Abstract

In line with sustainable agriculture development, an experiment was conducted including tillage as the main factor in two conventional systems (plowing and mixing fertilizer with soil) and no tillage (leaving residuals of green manure and direct corn sowing). The fertilizer resources were T0: control, T1: barley green manure without chemical and manure fertilizers, T2: barley green manure with full use of the recommended chemical fertilizer (NPK) to barley containing urea, super triple phosphate and potassium sulphate respectively as 165, 90, and 75 kg/ ha, T3: green manure with two -third residual of chemical fertilizer for barley and a third of the residual to corn, T4: green manure with one- third chemical fertilizer for barley and two-third for corn, T5: barley green manure mixed with 50% manure and 50% chemical fertilizer, and T6: green manure with 40 tons of manure used as a sub-plot in the split plot and in completely random blocks with three replications for two crop years ( 2013-2014) at the Agricultural Research Station, Sistan. The results showed that in comparison with no-tillage, the conventional tillage resulted in a significant increase in grain yield, the contents of nitrogen, phosphorus, potassium and soil organic carbon, bulk density and moisture content of the soil decreased in the conventional tillage. Sources of fertilizer (organic and chemical fertilizers) significantly increased soil organic carbon, nitrogen, phosphorus, potassium, and soil moisture content. The pH and soil bulk density factors decreased after using manure sources. Interaction tillage in the fertilizer sources showed that in the conventional tillage and Treatment T5 (mixture of manure, green and chemical fertilizers) the highest yield of corn was obtained with an average of 8471 kg/ha. The results of this experiment reported that using conventional tillage system with mixture of 50% manure, green and chemical fertilizers can increase corn grain yield, provide the dynamics of nitrogen, phosphorus, potassium, organic carbon, and improve soil bulk density and soil pH.
 


A. R. Vaezi, . M. Bagheri, K. Afsahi,
Volume 22, Issue 3 (11-2018)
Abstract

Soil erosion by water is a serious environmental problem, particularly in semi-arid regions. In these areas, water loss strongly affects soil loss as well as soil productivity in the rainfed lands. Determination of appropriate seed density for each tillage direction is vital to achieve high crop yield and to prevent soil and water losses. This study was conducted to investigate the combined effects of tillage direction and plant density on the soil and water losses in a rainfed land. Twelve crop plots with the dimensions of 1.5 m × 5 m were installed to investigate the effect of two tillage directions (up to the down slope and on the contour line), two seed densities (90 and 120 kg h-1), a three replications in a rainfed land with 10% slope steepness. Soil and water losses were measured in each plot during the wheat growth period (from October 2015 to June 2016). Significant differences were found between both tillage direction and plant density in the runoff (P<0.05) and soil loss (P< 0.001). Runoff and soil loss in the up to down slope tillage was 4.16 and 4.08 times bigger than the contour line tillage, respectively. Runoff and soil loss with the seed density of 120 kg h-1­ ­­were 11.25 and 26.32% lower than those with 120 kg h-1­, respectively. This result was associated with the increased cover crop and its control on water flow and the enhancement of water retention in the soil. There was no significant interaction between tillage direction and plant density in the runoff and soil loss. The importance of tillage direction in the soil and water loss was very larger than that of the plant density. The application of 120 kg ha-1 seed density on the contour line could, therefore,   considerably prevent soil and water losses in the rainfed lands.

A. R. Vaezi, S. Rezaeipour, M. Babaakbari,
Volume 23, Issue 3 (12-2019)
Abstract

Limited information is available on the effect of residues rates and slope direction on dryland wheat
(Triticum aestivum L.) yield.  This study was carried out to determine the effects of residues rates and tillage direction on grain yield and yield components of the Sardary wheat in a dryland region in Zanjan. Five wheat residues rates (0, 25, 50, 75 and 100% surface cover) were applied and incorporated into soil in two slope directions (along the slope and on contour lines) using the randomized complete blocks design with three replications in a land with 10% slope steepness. Overall, thirty plots with 2m × 5 m dimensions were installed in the field and wheat grain yield and yield components were determined for growth period from 2015-2016. Results indicated that grain yield and yield components were significantly affected by the residues rates and slope direction and their interaction. In contour tilled plots, wheat grain yield (1.78 to per hectare), thousand grain weight (42.26 kg) and wheat height (55.11 cm) were 5.32, 5.01, 16.19 and 1.36 percent more than the plots tilled along the slope. The highest grain yield was found in 75% of residue (2.45 ton per hectare) under contour line direction which was about 53% bigger than control treatment (0% straw mulch) under along the slope. This study indicated that the application of straw mulch before cultivation and incorporating into soil using contour line tillage are proper soil management methods to obtain higher wheat yield in this dryland region.

L. Piri Moghadam, A. Vaezi,
Volume 23, Issue 4 (2-2020)
Abstract

Sloping farmlands are the major sources of soil, water and nutrient losses in arid and semi-arid regions. Information about the impacts of different tillage practices on soil erosion, nutrient loss and crop nutrient uptake on the sloping farmland of semi- arid soil is, however, limited. This study was carried out to investigate the effects of tillage direction on soil, water, nitrogen and phosphorous losses and their uptake by plant in a rainfed wheat land. Field experiments were conducted in two tillage directions: downslope tillage and contour line tillage with four fertilization treatments: control, urea, triple superphosphate, and urea + triple superphosphate at the field plots with 1.75 m ´ 8 m in dimensions by using the randomized completely block design at three replications in Zanjan Township during 2014-2015. According to the results, Significant differences were found between the two tillage practices in soil loss (P < 0.001), water loss (P < 0.001), nitrogen loss soil loss (P < 0.001), and nitrogen uptake by wheat grain (P < 0.001), while phosphorous loss and its uptake did not show any statistically significant difference. Soil and water loss in the downslope tilled plots was 1.65 and 2.50 times higher than the contour line tillage, respectively. Nitrogen loss in the downslope tilled plots was 1.29 times more than that in the contour line tilled plots. Nitrogen loss in the plots was attributed to soil and water loss, so significant relationships were observed between nitrogen loss and soil loss (R2 = 0.59)
and water loss (R2 = 0.55). This study, therefore, revealed that the tillage direction is an important factor controlling runoff, soil loss, and nitrogen loss and its uptake by wheat in the rainfed lands of semi-arid regions. Application of the contour tillage is, therefore, the first step to conserve soil and water and to improve soil productivity in these regions.

M. J. Rousta, S. Afzalinia, A. Karami,
Volume 24, Issue 1 (5-2020)
Abstract

Given the various advantages of applying conservation tillage methods in the agriculture, including reducing the effects of climate change by decreasing the carbon dioxide emissions to the atmosphere caused by carbon sequestration in soil, this study was conducted with two wheat-cotton and wheat-sesame rotations at Agricultural Research Station Bakhtajerd, in Darab, the southeast of Fars Province, which had a warm and dry climate; this work was carried out in a loam soil during four years. The aim of this investigation was to compare the carbon sequestration (CS) in the soil after application of different conservation tillage methods with the conventional method. The results showed that in wheat-cotton rotation, the maximum and minimum amount of CS in the 0-20 cm depth of soil with the average 17.160 and 13.810 t/ha could be obtained by using no-till and conventional tillage, respectively. Therefore, no-till increased CS by 24.26% in wheat and cotton cultivation, as compared to the conventional tillage. The economic value of this CS increment for the environment was $2459 per hectare. In the wheat-sesame rotation, the highest and lowest CS was obtained with an average of 25.850 and 12.505 t/ha in no-till and conventional tillage, respectively. Namely, direct seeding of wheat and sesame increased the CS at the 0-20 cm depth of soil by 107%, as compared to the conventional tillage with the economic value of $9809.5 per hectare. Under similar conditions, in wheat-cotton and wheat-sesame rotations, the conventional methods could be replaced by no tillage.

A. Vaezi, E. Zarrinabadi, Y. Salehi,
Volume 25, Issue 3 (12-2021)
Abstract

The effective use of rainwater is a key issue in agricultural development in arid and semi-arid regions. The tillage system as an important soil management measure can affect the rainwater retention, soil moisture content, and in consequence crop yield in rainfed lands. This study was conducted to evaluate the effects of slope gradient and tillage direction on rainwater use efficiency (RWUE) in rainfed lands in Zanjan Province. The field experiment was performed in five slope gradients (12.6, 15.3, 17, 19.4, and 22%) and two tillage directions (along slope and on contour tillage) at two replications. Mass soil water content was determined at 5-day intervals and runoff was measured after rainfalls. Wheat grain yield was determined for each plot and RWUE was computed using the proportion of wheat grain yield and precipitation. Base on the results, runoff, soil moisture, wheat grain yield, and RWUE were affected by tillage directions, so that runoff in contour line tillage decreased about 6.4 times compared to along slope tillage and in consequence increased soil moisture, wheat grain yield, and RWUE about 8.7, 24.8, and 24.8%, respectively. Increasing runoff production in contour line tillage at steeper slopes was associated with a lower capacity of cultivated furrows that strongly declined soil water retention and negatively affected wheat grain yield and RWUE in the lands. This study revealed that the efficiency of the contour tillage in water retention and RWUE decreases in steeper slopes in rainfed lands.


Page 2 from 2     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb