Search published articles


Showing 64 results for Mica

M. Sheklabadi, H. Khademi, M. Karimian Eghbal, F. Nourbaksh,
Volume 11, Issue 41 (10-2007)
Abstract

The effect of overgrazing on vegetation changes in central Zagros has been studied by a few scientists, but there is no detailed information on the impact of such practices on soil properties. The objective of this study was to assess the effect of climate and grazing management on selected soil biochemical properties. Fourteen experimental range sites protected against grazing as well as their adjacent overgrazed sites in Chadegan, Pishkuh and Poshtkuh were selected. In each site, samples were collected from the depths 0-5 and 5-15 cm. Soil organic C (OC), microbial biomass C (MBC), total nitrogen (TN), organic C to total N ratio (C/N), microbial biomass C to organic C ratio (Cmic/Coc) and metabolic quotient (qCO2) were measured and/or calculated. The results showed that the lowest SOC, MBC, TN and Cmic/Coc occur in Chadegan due to low fresh materials input. The above parameters in Pishkuh and Poshtkuh regions are 2.5 to 3 times greater than those in Chadegan area. Grazing intensity in Pishkuh is less than that in Poshtkuh region and there is no significant difference between grazed and protected sites in Pishkuh. But, there is a significant difference between grazed and protected plots in Poshtkuh due to a higher grazing intensity. Higher Cmic/Coc and lower qCO2 suggest that the quality of organic matter is better in Poshtkuh and Pishkuh. In conclusion, highly degraded rangelands in Pishkuh and Poshtkuh seem to be able to recover very quickly with proper management, while Chadegan region needs a much longer period of time to restore.
N. Hedaiat, Y. Rouzbehan, S. A. M. Modares Sanavi,
Volume 11, Issue 41 (10-2007)
Abstract

The nutritive value of the annual alfalfa (Medicago rigidulla, Medicago polymorpha and Medicago scutellata) species harvested at flowering stage was assessed by chemical composition, in vitro dry matter and nitrogen digestibility, in sacco dry matter and nitrogen degradation (0, 8, 12, 24, 48 and 72 h) and palatability (short-term intake rate, STIR) methods. Mean values of the chemical analysis results (%) for M. rigidulla, M. polymorpha and M. scutellata respectively were as follows: OM 85.1, 86.1 and 86.9 CP 25.1, 23.8 and 15.6 NDF 23.2, 24.8 and 30.0 ADF 18.3, 19.9 and 24.0 ADIN 0.36, 0.11 and 0.22 calcium 1.4, 1.3 and 1.2 phosphorus 0.23, 0.28 and 0.24 potassium 1.5, 1.5 and 1.4. The digestibilities of the DM and OM for M. rigidulla were 0.82 and 0.79 M. polymorpha 0.83.5 and 0.80 M. scutellata 0.75 and 0.69, respectively. The degradabilities of DM and CP at outflow rate of 0.05 for M. rigidulla were 0.72 and 0.55 M. polymorpha 0.71 and 0.57 M. scutellata 0.63 and 0.58, respectively. Finally, the palatabilities (using short-term intake rate method) for M. rigidulla, M. polymorpha and M. scutellata species were 13.6, 12.8 and 11.3 (g DM/min) respectively. According to the methods used, the descending ranking order (high to low) of these species on the basis of their nutritional value was M.rigidulla, M.polymorpha and M.scutellata.
M. Modaraye Mashhoud, M. Esfahany, M. Nahvi,
Volume 11, Issue 42 (1-2008)
Abstract

  In order to reduce the rainfall damages on rice yield at harvest stage, a field experiment was conducted at Rice Research Institute of Iran, Rasht, in 2004 by using Sodium Chlorate as a chemical desiccant. Five seed moisture contents of Dorfak rice cultivar were considered as experimantal treatments [24 - 28% (M1), 22 - 24% (M2), 20 -22% (M3). 18 - 20% (M4) and control (M5= conventional harvesting)]. The experiment was carried out in a randomized complete block design with three replications and the effects of treatments on grain yield, head rice yield,seed germination rate and percentage, kernel breakage, kernel cracking, amylose content, gelatinization temperature and gel consistency were evaluated. Results showed that the whole plant and grain moisture contents were significantly reduced in all experimental treatments compared with control. M2 and M3 both cosiderably reduced the plant moisture content in which harvesting occurred 12 and 8 days respectively sooner than the control. In M1, due to high grain moisture and non - simultaneous grain filling in different tillers, many of panicles desiccated prior to maturity lost their quality. In M4, the crop harvested was only 2 days earlier than the control. Analysis of variance showed that there were no significant effects of treatments on evaluated traits. It seems that rice plant could be reliably desiccated by Sodium Chlorat and harvested earlier without any adverse effects on its quality and quantity.


N. Sahebani, N. Hadavi,
Volume 12, Issue 43 (4-2008)
Abstract

This research was conducted to study the effect of nematode (Meloidogyne javanica) on severity of tomato Fusarium wilt (Fusarium oxysporum f.sp. lycopersici race 1) and changes in Phenylalanine ammonia lyase (PAL) activity in split-root assays to show the possibility of systemic induced susceptibility caused by nematode to the fungus by local nematode infection. The results showed that the activity of nematode in one part of root confered susceptibility to Fusarium wilt in other part of the plant root and subsequently disease symptoms increased significantly in comparison to the control (without nematode inoculation). PAL specific activity showed a significant decrease in one half of split-root inoculated with fungus when the other half was inoculated with nematode as compared with the control (without nematode inoculation). Based on the results obtained in this study, nematode infection in one part of tomato plant root resulted in suppression of tomato defenses in all parts of the root, reduced tolerance or resistance to the fungus (as secondary pathogen) and intensified the fungal disease.
H. Khoshghalb, K. Arzani, M. J. Malakouti, M. Barzegar,
Volume 12, Issue 45 (10-2008)
Abstract

Changes of the main sugars and organic acids content in Asian pear (Pyrus serotina Rehd.) Cultivars ‘KS’9 and ‘KS’13 grown in Tehran were studied from fruit set to maturity. The main sugars and organic acids content in fruits were determined 1 and 2 months before harvest, at the time of harvest and 1, 2 months after harvest time using High Performance Liquid Chromatography (HPLC). Fruits were stored at 2˚C and 80-85% relative humidity (RH). There were significant differences between cultivars and time of fruit harvest in terms of sugars and organic acids content. In both studied cultivars, fructose, glucose and sorbitol increased from the first fruit sampling to one month after harvest (1 to 9% FW) and then decreased. Sucrose content decreased from 2 months before harvest to 2 months after harvest time (3 to 0.75% FW). In both studied cultivars organic acids content increased at the time of pick-up and then decreased. The highest organic acids contents in the studied cultivars were malic and ascorbic acids (345 and 41.1mg 100g-1FW in ‘KS’9 and control, respectively). The relationship between low sugar and organic acid content in fruits showed the highest correlation (0.8 to 1) in both cultivars among low flesh firmness, low total soluble solid (TSS), low dry weight and high internal browning determined in this study. Results indicated that high content of sugars and organic acids in fruit led to delayed internal browning. Asian pears with a low ascorbic acid concentration are probably more susceptible to internal browning. High correlation was observed between high sugars content and high fruit colour.
N. Sahebzadeh, R. Ebadi, J. Khajehali,
Volume 12, Issue 45 (10-2008)
Abstract

Due to injuries of pesticides to natural enemies of pests and pollinator insects, especially honeybees, during the flowering periods, it is essential to protect them. Application of chemical compounds along with the pesticides on the plants could repel the non-target insects from the sprayed areas for sometime and lessen the hazards of pesticides to them. In this study, ten repellent chemicals whose repellency effect was proven in the laboratory in previous studies were screened in the field. Among tested repellents including, Acetophenon, Methyl ethyl ketone, Methyl isobutyl ketone, Cyclohexanone, Acetyl acetone, Methylsalicylate, Propionic anhydride, Maleic anhydrate, 2- Ethylhexylamine, and Dibutylamine, it was revealed that amino group compounds including 2- Ethylhexylamine and Dibutylamine and esteric compound, Methylsalicilate had the highest repellency effect on the honeybees under the field conditions. Repellency effect of these compounds was greater at 15 pm than other sampling times. Repellency effects of different concentrations of these three compounds, when mixed with 0.5% concentration of fixative compounds, showed that the mixture of 2- Ethylhexylamine with Benzylbenzoate, Dibutylphthalate and Benzylalcohole with concentration of 0.17, 0.4 and 0.03 % respectively, the mixture of Dibutylamine at the concentration of 1% with Benzylbenzoate and Dibutylphthalate and at the concentration of 0.08% and higher with Benzylalcohole, and also mixture of Methylsalicilate at the concentration of 1.8 % and higher with Benzylalcohole, all have repellency effect of more than 70% under the field conditions.
S. M. Mansouri, M. Mobli, R. Ebadi, A. Rezai,
Volume 12, Issue 45 (10-2008)
Abstract

Because of many small florets and protandry, cross pollination in onion which is a biennial plant, by using polycross method for breeding is suitable and easy. To produce polycross seed, bulbs of 9 self onion genotypes were planted in the shape of equilibrium lattice design for 9 treatments with 10 replications on May 2002. To study some agronomical characteristicss, the polycross seeds produced from free pollination and original self-fed seeds (totally 18 genotypes) were planted in plots as a randomized block design with four replications. Samples were taken from each plot and different characteristics were measured. Results showed that polycross generally increased plant fresh and dry weight, plant height, percentage of off type bulbs and yield, with no effect on bulbing ratio and time to ripening. Although polycross increased most agronomical characteristics and yield in Kashan, Azarshahr and Kazeroon genotypes, in some genotypes little increase or even negative effects resulted due to interaction between genotype and polycross. With more assessment of polycross genotypes, good characteristics will be fixed and seeds with higher qualities will be produced.
B Salari, M Shamsedin Said, A Askarian Sardari,
Volume 12, Issue 46 (1-2009)
Abstract

In order to study the effect of NaCl priming on some agronomical and physiological traits of corn (single cross 704), an experiment was conducted at Agricultural Research Station of Bahonar University of Kerman in 2005. The experimental design was completely randomized designs with 3 replications. Treatments were a combination of all different levels of two factors including salinity levels (1, 4, 8, 12, 16 dS/m) and salinity solution for NaCl priming (1, 4, 8, 12, 16 dS/m). Results showed that salinity and NaCl priming had significant effects on total emergence, mean time to emergence, root and stem length, number of leaf, relative water content, ion leakage and K+/Na+. Mean comparison showed that increasing salinity decreased all plant characteristics (with the exception of mean time to emergence and ion leakage) by %49.5, %33.49, %23.97, %18.64, %14.05 and %40.20, respectively. However, increasing salinity led to 1.2 and 1.3 increase in mean time to emergence and ion leakage of leaves, respectively. Mean comparison also showed that NaCl priming decreased negative effects of salt stress, and all mentioned traits under NaCl priming increased as compared with control. The results showed that NaCl priming is a useful method for increasing salt tolerance in corn plant.
A Bohloli, A Naserian, R Valizadeh, F Eftekhari,
Volume 13, Issue 47 (4-2009)
Abstract

Eight multiparous Holstein dairy cows with 634±44 BW, 57±6 DIM, and 46.7±3.1 kg daily milk yield were assigned to a duplicated 4×4 Latin square design for 21-day periods (adaptation, 14d sample collection, 7d). The treatment diets were: 1) no pistachio by-product (control), 2) 5% of pistachio by-product, 3) 10% pistachio by-product and 4) 15% pistachio by-product. Corn silage in control diet was replaced with pistachio by-product. The blood metabolites (2h after feeding), DMI, daily milk yield and milk compositions were not affected by the treatment diets. The economically corrected milk (ECM) and fat corrected milk (FCM) were decreased linearly by increasing pistachio by-product in the diet (P<0.1). By increasing the by-product level in the diet, digestibility of DM, OM, NDF and ADF were decreased linearly (P<0.05). Daily rumination and chewing activity alone or per DMI, NDFI or ADFI were linearly decreased when the by-product level increased in the diet (P<0.1). The results showed that the pistachio by-product does not seem to be suitable for complete replacing of the roughages in the diet and it can be used as a part of forage in the diet up to 10% of DMI.
V Zabihollahi, F Maighany, M Baghestany, M Mirhady,
Volume 13, Issue 47 (4-2009)
Abstract

To study the goosegrass (Eleusine indica (L.) Gaertn.) in tall fescue (Festuca arundinacea Schreb.), an experiment in 15-year old turf was conducted during 2006 in Tehran in Sheikh Fazlollah highway using randomized complete block design with 4 replications in 1*1 m2 plots. Treatments were diclofop methyl at 2.5 and 3 Lha-1, fenoxaprop-p-ethyl at 0.8 and 1 Lha-1, clodinafop propargyl at 0.6 and 0.8 Lha-1, tralkoxydim at 1 and 1.2 Lha-1, sulfosulfuron at 27 and 35 gha-1 and untreated control. All treatments were repeated 3 times during the growing period of goosegrass. The results showed that after the last spraying, diclofop methyl at 2.5 and 3 Lha-1, fenoxaprop-p-ethyl at 0.8 and 1 Lha-1, clodinafop propargyl at 0.6 and 0.8 Lha-1 decreased goosegrass's biomass up to 81, 83.64, 81.26, 78.58, 80.27 and 81.26 percent, respectively and goosegrass's density up to 82.5, 83.13, 79.38, 79.38, 78.75 and 80.63 percent, respectively, without significant differences. Treatment after 2 times of spraying controlled goosegrass more than 80 percent. Tralkoxydim and sulfosulfuron decreased goosegrass' biomas and density about 70 and 60 percent, respectively. One week after the last spraying, diclofop methyl, fenoxaprop-p-ethyl and clodinafop propargyl treatments did not decrease tall fescue's biomass without significant differences with untreated control. Turf biomass was decreased by tralkoxydim at 1 and 1.2 Lha-1 and sulfosulfuron at 27 and 35 gha-1, by 37.54, 36.79, 40.48 and 48.55 percent, respectively. Herbicide treatments made visual rating by 49.38, 48.75, 48.75 and 50.63 percent, respectively. Overall, diclofop methyl at 2.5 Lha-1, fenoxaprop-p-ethyl at 0.8 Lha-1 and clodinafop propargyl at 0.6 Lha-1 can be recommended for goosegrass control in tall fescue because of insignificant differences between both their doses, bio-environmental problems, costs, and no damage to tall fescue.
M Kadivar, N Aghajani, H Hosini, M Kashni Nejad,
Volume 13, Issue 48 (7-2009)
Abstract

Since malting process of barley is greatly affected by the seed endosperm structure, getting information about its anatomical characteristics along with physico-chemical properties would be very important. The aim of this study was to measure length, width, thickness, kernel density, bulk density, porosity, total nitrogen, reducing sugar, diastatic activity, pH and color changes during malting process. Results showed that width, thickness, reducing sugar and diastatic activity of the samples increased over the malting time, whereas kernel density, bulk density and total nitrogen decreased (P<0/05). Scanning electron microscopic examination of barley endosperm revealed a significant relationship between grain total nitrogen and degree of endosperm modification. Because of lower nitrogen content in Sahra malt, more digestion of cell walls and protein matrix of endosperm walls were observed.
N Vahedi, M Mazaheri Tehrani, F Shahidi,
Volume 13, Issue 48 (7-2009)
Abstract

In this study, the effect of “Osmodehydrofrozen” fruit addition on sensory, physical, chemical and microbiological properties of concentrated yoghurt and its quality during storage was evaluated. This research was done in two stages. At the first stage, fruit percentage, type and addition time (before and after fermentation) was determined. The results indicated yoghurts containing 10% apple or 13% strawberry, which was added before fermentation had a better quality. Because of high osmotic activity of apple, the synersis was lower in apple yoghurt in comparison with strawberry yoghurt. According to osmotic activity of both fruits, the synersis value was much lower than that of fruit yoghurts, which contained untreated fruits. Taste value was higher in strawberry yoghurt and texture and mouth feel values were higher at low percentages of fruit. The results of the second stage (quality evaluation during storage) indicated that storage had a significant effect on pH, acidity, synersis, taste and texture (P<0.05). In samples which contained apple, coli forms disappeared after 7 days of storage. In samples that contained strawberry, coli forms disappeared after 7 days of storage.
M. Zolfi Bavariani , M. Maftoon ,
Volume 14, Issue 54 (1-2011)
Abstract

Due to low availability of zinc and copper in calcareous soils and the antagonism of these nutrients with each other, the study of their effects on growth and chemical composition of rice seems to have great importance. Also, the relations among different chemical forms of Zn and Cu and plant responses are very important, which can be used in investigation of antagonisms of these nutrients as well. Therefore, by application of different levels of Zn and Cu, their effects on plant growth and nutrient concentration in the plant were studied and different forms of these nutrients in soil were determined. Results showed that zinc application increased plant growth, Zn concentration and total uptake, but decreased Cu concentration in the plant. However, copper application showed no significant effects on the plant growth, but increased Cu concentration and total uptake and decreased Zn concentration in the plant. Also, the results showed an increase in carbonatic, adsorbed and exchangeable Zn forms and exchangeable Cu form by Zn application. Carbonatic form of zinc has maximum effects on concentration and total uptake of this element in the plant. Copper application increased carbonatic and organic forms of this nutrient in soil, and there was maximum correlation between organic form of Cu and its concentration and uptake in the plant
K. Kamali, M. Mahdian2, M. Arabkhedri1, A. Charkhabi1, N. Ghiasi1 and A. M. Mahdian, M. Arabkhedri, A. Charkhabi, N. Ghiasi, A. Sarreshtehdari,
Volume 15, Issue 57 (10-2011)
Abstract

Floodwater Spreading (FS) plays an effective role in improving soil fertility, ground water recharge, vegetation cover, and desertification control. The soil fertility might increase as a result of a suitable suspended sediment material transferred to the downstream by flood events. To define a relevant FS method which increases the efficiency of the FS projects, it is necessary to study the quality and quantity of transported sediment material, spatially and temporarily. In this research, this subject was investigated by taking soil samples throughout 13 FS stations for physical and chemical analysis over 5 years. Within each of the 13 selected stations in the three first flooded dikes, soil sampling was carried out using random-systematic method. The total Nitrogen, absorbed Phosphorous and Potassium, and Organic Carbon of each sample were analyzed. Because of the abnormality of data, nonparametric test was adopted to compare means. All stations were classified into three groups using cluster analysis method. Based on the results, the variations of fertility factors are irregular between the dikes and amongst years. This could have been affected by several factors such as the quality and quantity of diverted flood, the characteristic of FS sites, and irregularity of sediment material deposited on the sites. Despite the low quality of soil fertility prior to the construction of these stations, in general, FS has a considerable role in improving the soil fertility. However, desirable objectives may be achieved in long term through occurrence of diverse flood events and suitable maintenance of the stations.
Z. Ahmad Abadi, M. Ghajar Sepanlou, S. Rahimi Alashti,
Volume 15, Issue 58 (3-2012)
Abstract

In order to investigate the effect of vermicompost on physical and chemical properties of soil, an experiment was carried out in split plot based on complete randomized block design in three replications in Sari Agricultural Sciences and Natural Resources University. The physical and chemical properties of soil included bulk density, particle density, total porosity, water holding capacity, field capacity, permanent wilting point, available water capacity, pH, organic carbon and electrical conductivity in soil. Six levels of fertilizer treatments (T1= control, T2= chemical fertilizer, T3= 20 tons vermicompost + 1/2 T2, T4 = 20 tons / hac vermicompost + 1/2 T2 , T5= 40 tons vermicompost + 1/2 T2 and T6= 40 tons / hac vermicompost) and three levels of application years, one year of fertilization (1385), two consecutive years of fertilization (1385 and 1386) and three consecutive years of fertilization (1385, 1386, 1387). The results of the study showed that the application of these treatments in soil were significantly effective in increasing the total porosity, water holding capacity, field capacity, permanent wilting point, available water capacity, organic carbon electrical conductivity and in decreasing the bulk density, particle density and pH compared to control. In Contrast years of consumption of fertilizer did not have any significant effect on the physical properties of the soil except for FC, PWP, AWC, pH, OC and EC. The interaction between years of consumption of fertilizers were significantly different only in particle density and field capacity.
A. Kazemi, H. Shariatmadari, M. Kalbasi,
Volume 16, Issue 59 (4-2012)
Abstract

Iron deficiency is most widespread among plant nutrients. Nowadays, different materials such as inorganic salts, organic chelates, soil acidifying materials and industrial wastes are used to correct iron deficiency. Slag and convertor sludge of steel factories are among the industrials wastes for this purpose. These materials contain considerable amount of iron produced in large quantities every year. Application of slag and convertor sludge to soil may affect bioavailability and chemical forms of iron in soil. Sequential chemical extraction technique has been widely used to examine these chemical forms, and thus to better understand the processes that influence element availability. It was, therefore, the objective of this study to investigate the application effect of slag and convertor sludge of Esfahan Steel Mill on the chemical forms of iron, distribution of these forms and bioavailability of iron in surface (0-20cm) and subsurface (20-45cm) soil of three research fields. The results showed that more than 99% of the applied Fe occurred in residual, Fe oxide and hydroxide and free forms. Application of slag and convertor sludge for three consecutive years increased chemical forms and DTPA extractable iron in surface and subsurface soil of three fields.
H. Dehghan-Menshadi, M. A. Bahmanyar, S. Salek Gilani, A. Lakzian,
Volume 16, Issue 60 (7-2012)
Abstract

Biological indicators are considered soil quality elements, due to their dependence on soil organisms. In order to investigate The effect of compost and vermicompost enriched by chemical fertilizers and manure on soil organic carbon, microbial respiration, and enzymes activity in basil plant's rhizosphere, a field experiment was conducted as a split-plot design with randomized complete blocks and three replications in 2006. The main plot involved six levels of fertilizer including: 20 and 40 tons of compost enriched, 20 and 40 tons of vermicompost enriched per hectare, chemical fertilizer and control without fertilizer and sub-plot, and period of application (two, three and four years). The results showed that application of compost and vermicompost at all levels increased soil organic carbon (OC) and soil microbial respiration, microbial biomass and urease activity compared to the controls (p<0.05), but increasing trend among the treatments was not similar. The maximum amounts of OC, soil microbial respiration and enzyme activity were observed in 40 tons of vermicompost enriched with chemical fertilizer ha-1 with four years of application. In high levels of compost application, the urease activity was decreased.
K. Nosrati, H. Ahmadi, F. Sharifi,
Volume 16, Issue 60 (7-2012)
Abstract

Sediment sources fingerprinting is needed as an autonomous tool for erosion prediction, validation of soil erosion models, monitoring of sediment budget and consequently for selecting soil conservation practices and sediment control methods at the catchment scale. Apportioning of eroded-soil into multiple sources using natural tracers is an integrated approach in soil erosion and sediment studies. The objectives of this study, as a first work, are to assess spatial variations of biochemical tracers and theirs validation in discriminating sediment sources under different land uses and water erosions at catchment scale and to apply them as fingerprints to determine relative contributions of sediment sources in Zidasht catchment, Iran. In view of this, 4 enzyme activities as biochemical tracers were measured in 42 different sampling sites from four sediment sources and 14 sediment samples. The results of discriminant function analysis (DFA) provided an optimum composite of two tracers, i.e. urease and dehydrogenase that afforded more than 92% correct assignations in discriminating between the sediment sources in the study area. Sediment source fingerprinting model was used based on optimum composite of two tracers resulting from DFA to explore the contributions of sediment from the four sources. The results showed that the relative contributions from rangeland/surface erosion, crop field/surface erosion, stream bank and dry-land farming/surface erosion sources were 11.3±5.3, 8.1±3.8, 75±8.5 and 3.6±2.5, respectively. Therefore, we can conclude that fingerprinting using biochemical tracers may help develop sediment fingerprinting models and as a first step facilitate a more complete tool for fingerprinting approach in the future.
H. R. Owliaie,
Volume 16, Issue 62 (3-2013)
Abstract

Iron and manganese oxides as well as hydroxide minerals are among active constituents in soils because they are sensitive to environmental changes and often move frequently along soil profile. Therefore, their chemical forms content and their ratios are used as a soil developmental criterion. The present study was conducted in order to evaluate the effects of topography and drainage conditions on chemical forms of Fe and Mn along a soil catena in Dasht-e- Roum plain, in Kohgilouye Province. According to the results, maximum pedogenic Fe and Mn (Fed and Mnd) was found in more stable geomorphic surfaces. Higher values of Fed and Mnd were mostly observed in surface horizons compared to soil depth. Aquic soils exhibited higher contents of poorly crystalline Fe and Mn (Feo and Mno) and higher contents of Fed and Mnd. A significant correlation between clay content and Feo, Mno, Fet and Mnt contents was found. In addition, aquic condition increased Feo/Fed, Mno/Mnd and Mnd/Fed, 3.1, 4.3 and 1.9 times respectively but decreased the Fe crystallinity index 2.6 times. Aquic soils seem to have more favorable conditions for the formation of pedogenic Mn compared to pedogenic Fe, hence higher content of Mnd/Fed was observed in these soils
N. Mazloom, R. Khorassani, A. Fotovat, Y. Hasheminezhad,
Volume 17, Issue 66 (2-2014)
Abstract

The reclamation of salt-affected soils which occur on 831×106 ha can be effective in increasing agricultural production. Cultivation of plant species which are resistant to salinity can improve the soil by increasing the solubility of calcite and releasing the calcium in soil solution. This study was conducted as a column experiment with a saline-sodic soil (SAR = 23.8, EC= 12.88 dS m-1, pH= 7.7, CaCO3= 15.15 %). Three plant treatments including Sesbania acuelata, Cyanodon dactylon and Rubia tinctorum, and three chemical treatments including gypsum in two levels (50% and 100% gypsum requirement) and sulfuric acid with a control were arranged. All treatments were replicated 3 times. The soil columns were similarly leached by 41 liters of tap water during 30 days in 8 stages. After leaching, SAR and EC in soil, the amounts of sodium in leachate and total amount of sodium in plants shoot were determined. Results showed that the SAR was decreased compared to control by the plant treatments and the chemical amendments by about 59% and 65%, respectively. Moreover, two plants of Cyanodon dactylon and Rubia tinctorum had maximum amount of leachate sodium, which shows an impressive role of these plants in dissolution and leaching of exchangeable or sediment sodium in comparison with the other treatments. According to salient performance of phytoremediation in improvement of physicochemical properties of soil compared to chemical amendments, phytoremediation can be recommended as a profitable low-cost and effective method for remediation of saline-sodic soils.

Page 2 from 4     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb