Search published articles


Showing 27 results for Azari

S. Banihashemi , S. S. Eslamian, B. Nazari,
Volume 25, Issue 2 (Summer 2021)
Abstract

The upcoming climate change has become a serious concern for the human society. These changes, caused and aggravated by the industrial activities of the international community and the increase in the concentration of greenhouse gases in the atmosphere, are seen as a threat to the food security and environment. Temperature change and precipitation are studied in the form of different probabilistic scenarios in order to have an outlook for the future. The present study was conducted to address the effects of climate changes on temperature and precipitation in Qazvin plain in the form of five AOGCMs including Hadcm3, CSIRO-MK3, GFDL, CGCM3 and MICROC3.2, and 3 greenhouse gas emission scenarios of A1B, A2 and B1, based on different possible scenario combinations in the next 30 years, 2021-2050 and 2051-2080 (near and far future). On basis of the study results, all 4 target stations, on average, will have experienced a change between two ratios of 0.5 and 1.4 of  the observed precipitation period  by the end of 2050, and the mean temperature will have had a change  between -0.1 to 1.6 °C, relative to the observed period.  By the end of 2080,  the  precipitation will also have fluctuated between the two proportions of 0.5 and 1.7 times of the observed precipitation period and the mean temperature will touch an increase between 0.6 and 2.6 °C. Both SPI and SPEI indices suggest the increment in the number of dry periods in the near and far future. However, the total number of negative sequences differed considering the 3, 12 and 24-month intervals at the stations level. Given the SPEI index, as compared to the base period, the total negative sequences of drought and number of dry periods will increase at 3 stations of Avaj, Bagh-Kowsar and Shahid-rajaei-powerhouse and decrease at Qazvin station in the future; however, SPI gives different results, such that  for Bagh-Kowsar, there will be an increase in both total negative sequences of drought and number of dry periods, as  compared to the baseline period; three other stations will have more dry periods, specifically, but less total negative sequences. The results reported that the drought events would become severe, and the wet events would become extreme in the future.

F. Zarei, M.r. Nouri Emamzadehei, A.r. Ghasemi Dastgerdi, A. Shahnazari,
Volume 26, Issue 4 (Winiter 2023)
Abstract

The pattern of root distribution in layered soils is one of the significant issues in the calculations of soil water and irrigation management and planning. The objective of this study was to determine the pattern of root distribution of soybean in layered soils and its effect on water uptake. The research was conducted in a completely randomized design with 15 treatments consisting of three different textures of soil (light, heavy, and medium) in four replications. The pattern of root distribution was monitored by the sampling of columns at the end of the growth period of the soybean. It was observed that the presence of the layer with medium texture has led to better plant development and growth after comparing the treatments in terms of plant growth. In general, root length density decreased with increasing soil depth, except in cases where there were different layers of soil, and root length density takes place in the following order: root length density in layers with medium texture≥ heavy texture≥ light texture. The rate of root water uptake rate was highest in the sandy layers, intermediate in clay, and lowest in loamy texture. Also, the rate of root water uptake rate increased significantly with increasing depth regardless of treatments. It can be concluded that the pattern of root distribution and plant growth is significantly affected by soil texture and its stratification.

H. Nazaripour, M. Hamidianpour, M. Khosravi, M. Vazirimehr,
Volume 26, Issue 4 (Winiter 2023)
Abstract

In this study, the decade variability of frequency and severity of drought in Iran has been investigated. The one-month scale data from the standardized precipitation-evapotranspiration index (SPEI 01) in the period 1956 - 2015 have been used. Based on the common numerical thresholds, the characteristics of the frequency and severity of drought for each pixel have been calculated and they are the basis for the analysis of the drought situation. Then, the frequency of drought severity classes was calculated and its trend was investigated using the non-parametric Mann-Kendall test. The findings indicated the spatio-temporal variability of drought frequency and intensity patterns in Iran. The frequency of mild droughts has decreased from south to north and from east to west; while the frequency of more severe droughts has increased from north to south and from west to east. The frequency of mild droughts in the southeast, northwest, and northeast has increased by 5 to 40 percent. While the frequency of more severe droughts in most parts of Iran has increased between 10 and 20 percent. Variability in the frequency of more severe droughts is more pronounced in the Central Plateau catchment area as well as in the Persian Gulf-Oman Sea. The trend of drought intensity is decreasing (drought intensification) at the same time as the prevailing rainfall regime in Iran. A significant increase in drought intensity (wet season intensification) is observed only in southeastern Iran at the same time as the monsoon regime. However, extra-arid and arid regions of southeastern Iran are affected by the frequency and severity of drought and have a high degree of vulnerability.

Z. Nazari, M. Moeinaddini, S. Zare, R. Rafiee,
Volume 27, Issue 1 (Spring 2023)
Abstract

Due to the environmental problems caused by wind erosion, it is necessary to stabilize the dust centers with mulches. The objective of the present study was to determine and compare the optimum vinasse mulches based on mechanical indicators for sensitive soil stabilization to wind erosion. In this research, vinasse (0, 100, 200 g) is combined with bagasse (0, 25, 50 g), ash bagasse (0, 25, 50 g), filtercake (0, 12.5, 25 g), and one-liter water (81 treatments). At first, the treatments were determined in the appropriate range of salinity and acidity (35 treatments) and in the next step, the mechanical indicators have been measured after mulching on laboratory trays (2×30×100 cm). Optimum mulches have been determined based on five indicators by mean comparison (Duncan). The mean comparison showed that treatments 33, 30, 34, 32, and 19 show the mean difference between the groups based on layer thickness, impact resistance, compressive strength, and shear strength properly. It can be concluded that vinasse (100 and 200 g) with 50 g bagasse reduces the crack coefficient greatly, and the application of vinasse, bagasse, and filtercake does not affect the compressive strength and impact resistance.

A. Shahnazari, S. Sadeghi,
Volume 27, Issue 2 (Summer 2023)
Abstract

In the present paper, crop pattern criteria have been evaluated relying on sustainable development to increase agricultural water productivity. Seven criteria were selected as the main environmental and economic criteria and were prioritized and reviewed for important and strategic products in the Tajan catchment of Mazandaran province. Criteria prioritization was done using optimization through a genetic algorithm with an objective function based on sustainable development. Then, physical and economic productivity indices were calculated to determine the productivity value. Based on the results, in the selection of the crop pattern, firstly, the category of economic criteria and finally the category of environmental criteria have been given attention to the farmers in the current situation. But in the genetic optimization algorithm, all priorities have a similar order from the environmental point of view and then from the economic point of view although each product has its order of criteria. By this prioritization, the parameters of the cultivated area, the volume of water consumed, and the amount of chemical fertilizers have decreased on average by 26%, 34%, and 21%, respectively, and the parameters of product performance and profitability have increased by 43% and 61%, respectively. In addition to providing environmental standards and increasing sustainable development, this prioritization causes an average increase in physical productivity by 84% and an increase in economic productivity by 72%.

A.r. Vaezi, S. Rezaeipour, M. Babaakbari, F. Azarifam,
Volume 27, Issue 3 (Fall 2023)
Abstract

Improving soil physical properties and increasing water retention in the soil are management strategies in soil and water conservation and enhancing crop yield in rainfed lands. This study was conducted to investigate the role of tillage direction and wheat stubble mulch level in improving soil physical properties in rainfed land in Zanjan province. A field experiment was done at two tillage directions: up to the downslope and contour line, and five stubble mulch levels: zero, 25, 50, 75, and 100% of land cover equal to 6 tons per hectare. A total of 30 plots (2 m×5 m) were created. The results indicated that water infiltration and water content were considerably affected by tillage direction, whereas its effect on water holding capacity was not significant. This physical property of the soil was influenced by the inherent properties of the soil, including particle size distribution. The change of up to down tillage direction to the contour line increased soil infiltration to 11% and water content to 6%. The physical soil properties were wholly influenced by mulch consumption. Soil water content increased in mulch treatments along with water holding capacity and infiltration rate. The highest volumetric water content was at 100% mulch level (10.62%) which was 11% more than the control treatment. However, there was no significant difference between 100% and 75% mulch treatment. This revealed that the application of 75% stubble mulch in contouring tillage is a substantial strategy for improving soil physical properties and controlling water loss in rainfed lands of semi-arid regions.

I. Kazemi Roshkhari, A. Asadi Vaighan, M. Azari,
Volume 28, Issue 1 (Spring 2024)
Abstract

Due to climate change and human activities, the quality and quantity of water have become the most important concern of most of the countries in the world. In addition, changes in land use and climate are known as two important and influential factors in discharge. In this research, four climate change models including
HADGEM2-ES, GISS-E-R, CSIRO-M-K-3-6-0, and CNRM-CM5.0 under two extreme scenarios RCP2.6 and RCP8.5 were used as climate change scenarios in the future period of 2020-2050. The future land use scenario (2050) was prepared using the CA-Markov algorithm in IDRISI software using land use maps in 1983 and 2020. The SWAT model was calibrated to better simulate hydrological processes from 1984 to 2012 and validated from 2013 to 2019 and was used to evaluate the separate and combined effects of climate change and land use on discharge. The prediction of the climate change impact on discharge showed a decrease in most of the models under the two scenarios RCP2.6 and RCP8.5. The average maximum decrease and increase under the RCP2.6 scenario is 60 and 30 percent, respectively. This significant reduction is greater than that predicted under the RCP8.5 scenario. Examining the combined effects of climate and land use change revealed that the average decrease in discharge in the months of October, November, December, and January under two scenarios is 46.2 and 58%, respectively. The average increase in discharge is predicted to be 47% under the RCP8.5 in the months of April and May in the HadGEM2ES.


Page 2 from 2     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb