Search published articles


Showing 158 results for Mir

A. Mohammadkhani, M.r. Nouri Emamzadeh, A. Mirjalili,
Volume 17, Issue 66 (winter 2014)
Abstract

Four partial root zone drying (FULL, 1PRD50, 2PRD50, 3PRD50) treatments were investigated on tomato characteristics and water use efficiency using completely randomized design with five replications. In the control treatment (Full irrigation), all water requirement of plant was met in the root area equally during the growing season. Roots in 1PRD50, 2PRD50 and 3PRD50 treatments were divided into two equal parts and each side of root was irrigated one, two and three times, respectively. Results showed that the highest (44.43 g) and lowest (24.57g) tomato mean weights were obtained at full irrigation and 3PRD50, respectively. Maximum of diameter (43.1 ml) and fruit number (46 No) was observed in the control and minimum of these traits (15.6 ml and 20 No, respectively) was observed in 3PRD50 treatment. There was a highly significant difference between fruit number in all treatments. Highest yield and marketable yield was obtained in the control and 1PRD50 treatment, respectively. The highest irrigation water use efficiency was obtained in 1PRD50 (48 percent more than the control) and the lowest value was in 3PRD50 (27 percent lower than the control). Based on results of this study, partial intermittent irrigation (1PRD50) is recommendable for tomato production.
H. Mirshekali, H. Hadi, H. Khodaverdiloo, R. Amirnia,
Volume 18, Issue 67 (Spring 2014)
Abstract

Heavy metals contamination of soil and plants has very important and vital role in relation to health and life of human and other organisms. The aim of this study was to assess the efficiency of sorghum (Sorghum bicolor) and sommon lambsquarter (Chenopodium album) in phytoremediation of Zn from soil. Efficiency of 0.01M CaCl2, 0.1M NaNO3, and 1M NH4NO3 for extraction of “bioavailable fraction of soil Zn was also compared. Correlation between the Zn concentrations extracted by these methods and plants response (relative yield and shoot Zn concentration) to soil Zn contamination was then evaluated. For this purpose, a calcareous soil sample was contaminated with different concentrations of Zn. Sorghum and common lambsquarter, were grown in pots containing the contaminated soil and were analysed for their Zn concentrations after harvest. Results of this study showed that, common lambsquarter was more tolerant to low and medium concentrations (≤900 mg/kg), but sorghum tolerated high concentration of Zn. Also sorghum was more capable in removal of Zn from soil in comparison to common lambsquarter, so that soils contaminated with low Zn levels (≤900 mg/kg) can be remediated by sorghum. In addition, there was a significant correlation between 1 M NH4NO3-extractable soil Zn and the plants response (relative yield and shoot Zn concentration) to soil Zn contamination.
H. Modabberi, M. Mirlatifi, M. A. Gholami,
Volume 18, Issue 67 (Spring 2014)
Abstract

Since more than 75% of the rice fields in Iran are located in the Northern provinces i.e. Mazandaran, Guilan, and Golestan identifying the crop water requirement of rice fields is essential for water resources planning in the Northern provinces. The objective of this research was to ascertain the crop water requirement of two rice cultivars namely Hashemi and Khazar in Guilan province during 1389 growing season. Four iron barrels with diameter of 56 cm were used as lysimeters to grow the cultivars mentioned. According to a simple volume balance approach the crop water use of the four lysimeters were determined during the growing season. The elements of volume balance approach such as the depths of drainage, precipitation, and irrigation were recorded daily and the average of 5-day and 10-day periods were reported. The daily rice crop water use during the growing season was found to range from 2.4 to 6.3 mm/day with a seasonal crop water use ranging from 430 to 470 mm for Hashemi and Khazar cultivars, respectively. Daily reference evapotranspiration was computed by the FAO-Penman-Montith equation and accordingly rice crop coefficients were computed. The crop coefficient of Hashemi variety was found to be 1.1, 1.3, and 1.1 during the initial, mid, and end growth stages, respectively. In addition, the aforementioned parameters for Khazar variety were 1.2, 1.3, and 1.1.
E. Amiri, A. A. Mahboubi, M. R. Mosaddeghi, H. Shirani,
Volume 18, Issue 68 (summer 2014)
Abstract

In this study, the effect of soil structure under saturated and unsaturated flow conditions on nonreactive bromide (BR) transport was investigated. The soil structure treatments consisted of undisturbed columns (prismatic and granular structures), and disturbed columns (single- grain structure). A constant concentration (C0= 0.005 M) of bromide was supplied on the surface of the columns in a steady-state flow condition. For the saturated flow condition, a flux equal to the highest saturated hydraulic conductivity (Ks) of the columns was applied on all of the columns. To create the unsaturated flow condition, a flux equal to the half of the lowest Ks of the columns was imposed on all of the columns. The leaching of the columns was followed for five pore volumes (5PV) and the bromide concentration of the effluent was measured at 0.2PV intervals using bromide selective electrode. The breakthrough curve (BTC) of single- grain structure was sigmoidal (S-shaped) and similar to piston-capillry flow form. In contrast, BTCs of the granular and prismatic structures had a steep initial part and later gradual tailed part. The preferential pathways caused the early appearance of bromide in the leachate of columns of these two structures. Tailing of the BTCs might be due to dispersion and diffusion between mobile and immobile water fractions. In saturated condition, the bromide plume appeared earlier than that in the unsaturated condition because of domination of mass flow and rapid macroporous stream. The results demonstrated the importance of soil structure, preferential pathways, and flow conditions in solute and pollutant transport.
J. Abedi Koupai, S. S. Eslamian, S. Y. Hasheminejad, R. Mirmohammad-Sadeghi,
Volume 18, Issue 69 (fall 2014)
Abstract

Phytoremediation models are important to understand the processes governing phytoremediation and the management of contaminated soils. Little effort has been made for evaluating the potential of the phytoremediation of metals based on the mathematical models. Therefore, the purpose of this study was modeling the phytoremediation of the nickel-contaminated soils. For this purpose, a model was recommended for estimating the rate of the phytoremediation of nickel from the soil by means of relative transpiration reduction and concentration of nickel in the plant functions. To evaluate the model, soil was contaminated with different levels of nickel by nickel nitrate. Then, the pots were filled with contaminated soil and Basil (ocimum tenuiflirum L.) seeds were planted. To avoid the dry tension, the pots were weighed and irrigated to the point of field capacity (FC) at short time intervals (48 hours). The plants were harvested in four times. At each harvesting stage, the relative transpiration values and nickel concentration in the soil and plant samples were measured. The performance of the model was evaluated by statistical methods such as Maximum Error, Root Mean Square Error, Coefficient of Determination, Efficiency of Model and Coefficient of Residual Mass. Results demonstrated that in the case of nickel contamination in soil, changes in the relative transpiration of Basil can be measured by the two proposed models and the linear model (R2=0.94) has a better performance compared to the nonlinear one (R2=0.84). Also the model obtained from the combination of linear function and nickel's concentration in soil has a relatively good (R=0.7) fit with the measured values of the remediation rate of nickel in soil.


M. Nakhaei, V. Amiri,
Volume 18, Issue 69 (fall 2014)
Abstract

Modeling of flow and transport processes in variably saturated porous media requires detailed knowledge of the soil hydraulic properties. The hydraulic properties to be determined by the inverse problem solution are the unsaturated hydraulic conductivity K(h) and the water retention curve θ(h). The inverse modeling approach assumes that both θ(h) and K(h) as well as transport parameters can be determined simultaneously from transient flow data by numerical inversion of the governing flow and transport equations. In order to find answers to the questions of uniqueness, identifiability and stability of different experimental setups, a new numerical experiment of redistribution was carried out. To study the shape of the objective function near its minimum, response surfaces for the estimated parameters were generated. The sensitivity of model outputs with respect to changes in input parameters was also computed and analyzed. Results of the redistribution experiment suggest that the non-uniqueness increases when the model output variables are not sensitive enough to the optimized parameters. As expected, the estimated values of parameters were sensitive to the magnitude of error in the measured data. In this experiment, the parameter estimation based on the pressure head observations provides unique solution. Due to preferential flow in the sample, tensiometric observations may provide poor results for inverse problem solution. Taking into account information about saturated hydraulic conductivity, Ks improved the likelihood of uniqueness and reduced the errors in parameter estimation of the shape parameters (α, n). It was found that the sensitivity analysis could be a useful tool to design the optimal time and location distribution of experimental observations.


S. M. Mousavi, S. M. Mirlatifi, S. H. Tabatabaei,
Volume 19, Issue 71 (spring 2015)
Abstract

The effects of water quality, installation depth and space of subsurface drip irrigation (SDI) laterals on yield and visual quality of turfgrass were investigated. A field experiment was conducted at the experimental farm of Shahrekord University. The experimental design was a Split-Split Plot with experimental arrangement of completely randomized block design with 16 treatments and three replications. Treatments included two types of water quality: well water (W) and treated wastewater (WW), two installation spaces of SDI laterals (45 and 60 cm) and four depths of placement of SDI laterals (15, 20, 25 and 30 cm). Turfgrass indices recorded during the experiment included height, dry mass, color, visual density and growth uniformity. The ANOVA results showed that interaction of irrigation water quality × lateral spacing × installation depth of SDI laterals is significant on the height, dry mass and growth uniformity of turfgrass. Irrigation with wastewater as compared to well water produced grass with significantly higher height and more dry weight. Treatments irrigated with well water had a better growth uniformity than those treatments irrigated with wastewater. Results indicated that there was no significant effect of experimental factors on turfgrass color. The interactional effect of lateral spacing and installation depth on the turfgrass density was significant. Increasing installation depth and laterals spacing caused a decrease in turf’s yield and visual quality.


N. Jafarzadeh Haghighi Fard, M. Abbasi, R. Alivar Babadi, H. Bahrani, A. Mirzaie, M. Ravanbakhsh,
Volume 19, Issue 71 (spring 2015)
Abstract

As there are some health and environmental concerns about wastewater, dewatered sludge, increase in green waste, and restricted legislation about burning them outdoors, environmental health engineers are investigating to find a simple, cost effective and efficient method. This is aimed to have healthy, safe and sustainable disposal of such materials. Co-composting of sludge and green waste is a newly developed process which can help us to achieve this goal. This study was to investigate the most suitable ratio of dewatered sludge to green waste from Chonibieh wastewater treatment plant in Ahvaz, Iran, and assess the feasibility of co-composting of this waste. So, dewatered sludge was composted with green waste as a bulking agent in three different ratios (1:1 ,2:1 ,3:1 : green waste: dewatered sludge W:W). Then composting proceeded in pilot vessels (M1, M2, M3) for 23 days. The C/N ratio, the percentage of total nitrogen, phosphorus, total organic carbon, humidity and pH were tested in certain periods and compared with the national standards. This study showed that in M1, M2, M3 pilots, all parameters (except for total phosphorus) including C/N ratio, percentage of total nitrogen and total organic carbon, humidity, pH could meet class 1 national standard in Iran. Moreover, this compost product could meet the EPA microbial standards, class A. So, the product of this compost process is completely stabilized and could be used in agricultural lands.


M. Farzadian, S. Hojati, Gh. A. Sayyad , N. Enayatizamir,
Volume 19, Issue 72 (summer 2015)
Abstract

One of the major problems associated with petroleum-contaminated soils is water repellency, especially in arid regions of the world. Hence, a variety of methods such as clay addition has been proposed to improve the hydrophobicity of soils. This research was conducted to evaluate the influence of zeolite application on water repellency of an oil-contaminated soil from Khuzestan Province under various treatments including initial soil moisture content (0, 10, 20, and 30 weight %), the amount of applied zeolite (2, 4 and 8 weight %), size (25-53 and <2 μm), and exchangeable cation (Sodium and Calcium). The hydrophobicity of soil sample was determined using Water Drop Penetration Time (WDPT) method. The results showed that by increasing the amount of applied mineral WDPT decreased, where the application of 2 percent of zeolite led to the reduction of WDPT by about 27 percent less than the control. The results also indicated that soils treated with sodium-saturated zeolite had less WDPT than the calcium-treated samples, where the average of WDPT in sodium and calcium treatments decreased by 23% and 5% compared with the control, respectively. The initial moisture content of 30 percent showed the best performance with the decreasing WDPT of about 67 percent. Furthermore, the effect of mineral particle sizes showed a meaningless reduction in WDPT.
R. Mirzaei, K. Rahimi, H. Ghorbani, N. Hafezimoghades,
Volume 19, Issue 73 (fall 2015)
Abstract

Determining the spatial distribution of different contaminants in soil is essential for the pollution assessment and risk control. Interpolation methods are widely used to estimate the concentrations of the heavy metals in the unstudied sites. In this study, the performances of interpolation methods (inverse distance weighting, local polynomials and ordinary Kriging and radial basis functions) were evaluated to estimate the topsoil contamination with copper and nickel in Golestan Province. 216 surface soil samples were collected from Golestan province, and their Cu and Ni concentrations were measured. Soil contamination was determined using different interpolation methods. Cross validation was applied to compare the methods and estimate their accuracy. The results showed that all the tested interpolation methods have an acceptable prediction accuracy of the mean content for soil heavy metals. RBF-IMQ and IDW1 methods had the lowest RMSE, whereas RBF-TPS method with the largest RMSE estimated a larger size for the polluted area. The greater the weighting power, the larger the polluted area estimated by IDW. Compared with the ‘‘sample ratio over the pollution limits” method, the polluted areas of Cu and Ni were reduced by 8.38% and 6.14%, respectively.


R. Valizadeh Yonjalli, F. Mirzaei Aghjehgheshlagh, A. Ghorbani,
Volume 19, Issue 73 (fall 2015)
Abstract

This study was conducted to determine some mineral content concentration in soil and plant of three elevation classes (1500, 2200 and 3000m) and two phenological stages of flowering and seedling start in north-facing slopes of Sabalan rangelands. Soil samples from the depth of 20cm and plant samples using 1×1m plots with 10 replications were collected. After sample preparation, the concentrations of minerals such as calcium, phosphorous, sodium, potassium, ion, copper, zinc and magnesium were determined using spectrophotometer and flame photometer. Data was analyzed by SAS9.1 software using Completely Randomized Design with a Generalized Linear Model procedure. Results showed that elevation had a significant effect on Ca, Fe, Cu, Zn and Mn of soil and P, Na, K, Mg and Mn of plants in the study areas (P&le0.05). Growing stages had a significant effect on all elements of plants except Ca (P&le0.05). Moreover, results showed that in three elevation classes the high demand minerals’ concentration was higher at the starting seedling stage in comparison with the flowering stage. In contrast, the low demand minerals’ concentration in three elevation sites was higher in the flowering stage in comparison with seedling stage. Interaction effect of elevation and growing stage was also significant in relation to all elements except Ca (P&le0.05).


A. Jafarishalkoohy, M. Vafaeian, M. A. Rowshanzamir, M. Mirmohammadsadeghi3,
Volume 19, Issue 73 (fall 2015)
Abstract

A laboratory research program was arranged to study the effect of different factors influencing the stability of fine soils against wind action. For this purpose, a laboratory wind tunnel was stabilized and several soil samples were examined by putting the sample trays inside the wind tunnel for different rates of wind velocities. The tray for soil samples was 20´30 cm2 with the depth of 5 cm, and the fine soil samples were chosen with different sizes of particle and porosity. Because the main aim of this research was to investigate the effect of some polymer additives to the soil, many samples were made of the soils improved by different additives in different percentages. Furthermore, the effect of infiltration of the liquid additives was also examined, which could show different infiltration heights as functions of soil type, additive type and the height of pouring. Some of the results were examined by using software. The lab results in this research were compared with some proposed theoretical ones. It was found that as the average diameter of particles increases, erodibility under the same wind velocity decreases, and the applied polymer emulsions decrease the erodibility up to 90% compared to the initial condition. Impacts of dust emission due to the suspended dispersion of fine particles and creeping movements of coarse particles are mitigated as a result of treatment with these emulsions. Variations in erosion of soils at various wind velocities depend on the value of threshold friction velocity with the result that the soil erosion values in case of coarser soils after the increase in velocity would be higher than those of threshold friction velocity. Finally, a relationship is proposed for estimation of soil erosion in terms of wind velocity. The results are consistent with the transport rate relationships proposed by different scholars.


M. Mir Mohammad Sadeghi, A. R. Sotoudehfar, E. Mokhtari,
Volume 20, Issue 77 (Fall 2016)
Abstract

Improvement of soils is among the major concerns in civil engineering, therefore a variety of approaches have been employed for different soil types. The annual budget of implementing the projects of this kind in countries clearly implies the importance of the subject. The loose granular soils and sediments have always imposed challenges due to their low strength and bearing capacity. Bio-mediated soil improvement has recently been introduced as a novel link of biotechnology (biotech) and civil engineering for improving the problematic soils, i.e. utilizing some bacteria to precipitate calcite on the soil particles. Bio-grouting is a branch of Bio-mediated soil improvement which is a method based on microbial calcium carbonate precipitation. In this regard, the soil samples were stabilized by injecting the bacterium Sporosarcina pasteurii in the first phase of the process and Urea and Calcium Chloride in the second phase of the process (two-phase injection) as the nutrients into the sandy soil columns and subjected to unconfined compressive strength test. In this research, Taguchi method was utilized for design of experience (DOE). Based on results obtained, the activity of the bacteria caused the precipitation of calcium carbonate in soil samples so that after 21 days, the unconfined compressive strength of the soil increased from 85 kPa in the control sample to 930 kPa at optimum condition.


O. Babamiri, Y. Dinpazhoh,
Volume 20, Issue 77 (Fall 2016)
Abstract

Accurate estimation of ET0 in any region is very important. The aim of this study is to compare and calibrate the 20 empirical methods of estimating evapotranspiration (ET0) based on three categories in monthly timescale at the Urmia Lake watershed. These categories are: 1) temperature-based models (Hargreaves (HG), Thornthwaite (TW), Blaney-Criddle (BC), Linacre (Lin)), 2) radiation-based model (the Doorenbos-Pruitt (DP), Priestly-Taylor (PT), Makkink (Mak), Jensen-Haise (JH), Turc (T), Abtew (A), McGuinness-Bordne (MB)) and 3) mass transfer-based model (Meyer (M), Dalton (D), Rohwer (R), Penman (P), Brockamp-Wenner (BW), Mahringer (Ma), Trabert (Tr), WMO and Albrecht (AL)). For this purpose, the information of 10 synoptic meteorological stations during the period of 1986-2010 was used. Results from the above mentioned methods were compared with the output of the FAO Penman-Monteith (PMF-56) method. Performance of the methods evaluated using the R2, RMSE, MBE and MAE statistics. The best and worst methods of each category were determined for the study area. The best methods of each category were calibrated for the area under study. Results indicated that there is a significant difference between the results of selected methods of each category and the PMF-56 method. Performance of the selected methods remarkably increased after calibration. Among the temperature-based group, the HG method having the median R2 value of 0.9597 was recognized as the best method. After calibration the medians of RMSE, MBE, and MAE were 72.09, 3.14 and 10.70 mm/ month, respectively. After HG, the Lin and BC found to be the best second and third methods in the study area. The TW showed Large error, therefore, it was not a suitable method for ET0 estimation in study area. Among the radiation-based group, the DP model was selected as the best method in the study area. Furthermore, the median of R2 values was 0.982. In this method, the medians of RMSE, MBE and MAE after calibration were 7.89. -0.62 and 6.03 mm/month, respectively. Following DP, the PT method was recognized as the 2nd best one. The methods namely M, JH, T, A and MB were put in the 3rd to seventh rank of the radiation category. Finally, among the mass transfer-based group, having R2=0.8945, the Meyer method was selected as the best method of this group for the study area. In the mentioned method (after calibration) the medians of RMSE, MBE, and MAE were 21.8, -8.7 and 17.3 mm per month, respectively. From mass transfer based group, the D method was found as the second best method in the study area. The methods namely R, P, BW, Ma, Tr, WMO and A were ranked 3rd to 7th, respectively. In general, the performance of radiation based methods was superior than others in Urmia Lake basin. Temperature based methods and mass transfer based methods were ranked second and third, respectively. Further examination of the performance resulted in the following rank of accuracy as compared with the PMF-56: DP (Radiation based), HG (Temperature based) and Meyer (Mass transfer). In general, it can be concluded that after calibration the DP method is suitable to estimate reference crop evapotranspiration among 20 selected methods in the Urmia Lake basin.


S. Moradi Behbahani, M. Moradi, R. Basiri, J. Mirzaei,
Volume 20, Issue 78 (Winter 2017)
Abstract

Salt cedar is widely spread out in most part of the country but there is lack of information about its symbiosis with arbuscular mycorrhizal fungi. Then, the main objective of this study was to evaluate the symbiosis of AMF with salt cedar and its affectability by distance from river and soil physiochemical properties. For this purpose, riparian Maroon forest width was divided to three locations including riverside area, intermediate area and the area far from river with 200-hundred-meter interval. In each site 10 salt cedars were randomly selected and soil plus hair root samples were gathered from the salt cedar rhizosphere. Our result indicated that root colonization and spore density in the intermediate distance had the lowest and highest values, respectively. These values were significantly different compared to the other two sites. The average root colonization percent in the riverside area, intermediate area and the area far from river sites were 82.37, 73.77 and 80.17, respectively. While the average spore density in the riverside area, intermediate area and the area far from river were 189, 245.5 and 188.8 in five gram soils, respectively. Root colonization had significant positive correlation with soil potassium while spore density had significant correlation with studied soil physiochemical properties. Also, soil nitrogen, organic carbon, potassium and clay showed 52.6, 51.19, 50 and 23.4% decreasing trend from the riverside area to the area far from river. Regarding this research results, salt cedar showed high level of symbiosis with arbuscular mycorrhizal fungi but this symbiosis could be affected by distance from river in riparian forest.


A Heidari, H. Haji Agha Alizadeh, A. R. Yazdanpanah, J. Amiri Parian,
Volume 20, Issue 78 (Winter 2017)
Abstract

Traditionally, most corn field in Hamedan Province is prepared for planting by moldboard plowing followed by a number of secondary tillage operations. In recent years conservation tillage systems have become more popular. This research was conducted in the form of a split plot experimental design with six tillage treatments and three replications. Main tillage methods including: (T1) conventional tillage (moldboard plow + cyclotiller equipped with roller), (T2) combination tiller (chisel plow equipped with roller) (T3) bandary tillage with chisel blades were considered as main plots and two P fertilizer application including: (F1) fertilize broadcasting and (F2) fertilizer bandary placement were considered as sub plots. During growing seasons, soil mechanical resistance (cone index), soil bulk density and water infiltration in soil were measured. At the end of the growing season (harvesting time), corn yield and its components were measured. Results indicated that tillage methods and soil depth had a significant effect on the soil bulk density and cone index. The effect of tillage on water infiltration in soil was significant. The effect of P fertilizer application on corn yield was significant (P≤0/01) and P fertilizer bandary placement with mean corn yield of 10862 kg/ha had higher yield value than the fertilizer broadcasting with mean corn yield of 9965 kg/ha. Although the difference between tillage methods for corn yield was not statistically different, T2 treatment with mean corn yield of 10913 kg/ha had higher yield value than the other two tillage treatments (T1 with mean corn yield of 10106 kg/ha and T3 with mean corn yield of 10222 kg/ha).


S. A. M. Mirmohammady Maibody, S. Dybaie, H. Shariatmadari, N. Baghestani,
Volume 21, Issue 2 (Summer 2017)
Abstract

The adaptability of Haloxylon appilium to adverse environmental conditions and especially its capability for an appropriate establishment in saline and desert soils has introduced this plant as a suitable means for biological methods to stabilize sand dunes, control erosion and prevent desertification in arid regions. In order to evaluate the ecophysiological characteristics of Haloxylon appilium some characteristics of soils under the long term establishment, survival and development of this plant and ion composition of this plant growing in Yazd province in thirty two growing trees of similar ages and traits within 8 locations of Chah Afzal and Ashkezar were investigated and their height (H), crown diameter (CD) and the above ground biomass index (Yi) were measured. Also, after cutting the trees from their collars, soil profiles were dug underneath the tree locations and soil samples were taken at depths of 0-30, 30-60, 60-90 and 90-120cm from four sides of each profile. The samples were then analyzed for Electrical Conductivity (EC), pH and Cl, Na, Ca, Mg, K concentrations in 1:5 soil to water extracts. The results showed statistically significant differences in soil parameters between the two regions, except for pH and Mg concentrations. The ion concentration of the plants in the two regions showed statistically significant differences for only Cl in shoots and Ca in roots. Based on the plant growth indices the Chah Afzal and Eshkezar regions were respectively evaluated as suitable and unsuitable for Haloxylon appilium growth. In spite of a higher salinity, the higher Ca and K concentration and lower Na/K ratio of Chah Afzal soils may explain the better plant performance in this region against Eshkezar, however, comprehensive researches on application of Ca and K fertilizer are needed to confirm this hypothesis

R. Amirnia, J. Jalilian, E. Gholinezhad, S. Abaszadeh,
Volume 21, Issue 4 (Winter 2018)
Abstract

To evaluate the effect of supplemental irrigation and seed priming on yield and some quantity and quality characteristics of vetch (Vicia dasycarpa) rainfed maragheh cultivar, an experiment was carried out at the Research Farm of Faculty of Agriculture, University of Urmia, West Azarbaijan province, Iran, during 2011. The experiment was laid out using split-plot, based on Randomized Complete Block design in three replicates. The factors studied were: Supplemental irrigation at four levels: without supplemental irrigation (I1), 1 time of supplemental irrigation (I2), 2 times of supplemental irrigation (I3) and 3 times of supplemental irrigation (I3). The subplot included four levels of seed priming: Control (C), Water (W), Phosphate (P) and Nitroxin (N). Plant height, pod number in stems, 1000-grain weight, wet and dry forage yield in the second and third harvest and fiber percentage in the second and third harvest, protein yield in the second and third harvest, biological yield and harvest index were influenced by the supplemental irrigation. Wet and dry forage yield in the second harvest and wet forage yield in the third harvest were highest in I4 with respectively 14.5, 16.72 and 3.56 (tons/hectare) yield and lowest with respectively 7.73, 7.47 and 2.06 (tons/hectare) yield. As a result, applying 2 times of supplemental irrigation and seed treatment with phosphate and nitroxin had positive effects on quality and quantity yield of vetch and they could improve the quantity and quality of Vetch forage.
 


R. Mostafazadeh, Sh. Mirzaei, P. Nadiri,
Volume 21, Issue 4 (Winter 2018)
Abstract

The SCS-CN developed by the USDA Soil Conservation Service is a widely used technique for estimation of direct runoff from rainfall events. The watershed CN represents the hydrological response of watershed as an indicator of watershed potential runoff generation. The aim of this research is determining the CN from recorded rainfall-runoff events in different seasons and analyzing its relationship with rainfall components in the Jafarabad Watershed, Golestan Province. The CN values of 43 simultaneous storm events were determined using SCS-CN model and the available storm events of each season have been separated and the significant differences of CN values were analyzed using ANOVA method. The Triple Diagram Models provided by Surfer software were used to analyze the relationships of CNs and rainfall components. Results showed that the mean values of CN were 60 for summer and winter seasons and the CN values in the spring and autumn seasons were 50 and 65, respectively. The inter-relationships of CN amounts and rainfall characteristic showed that the high values of CNs were related to high rainfall intensities (>10 mm/hr) and rain-storms with total rainfall more than 40 mm. Also the CN values were about >70 for the storm events with 40-80% runoff coefficient values.

F. Amiri, T. Tabatabaie, S. Valipour,
Volume 22, Issue 1 (Spring 2018)
Abstract

The purpose of this paper was to assess the groundwater quality near Qaemshahr landfill site using the Iran Water Quality Index for Groundwater Resources-Conventional Parameters (IRWQIGC). In this study, samples were taken from 11 wells with three replications in February 2015 and water quality was assessed by evaluating nitrate, fecal coliform, electrical conductivity (EC), pH, total hardness, sodium absorption ratio, biological oxygen demand, phosphate, chemical oxygen demand, and dissolved oxygen parameters with the standard measuring methods; also, the quality of ground water was determined using the IRWQIGC. Statistical description of the parameters was performed using the SPSS software. Spatial extension mapping parameters were drawn using geostatistics extension with the ArcGIS software. The results of water quality assessment revealed that 0.15% of the area was classified as bad, 98.85% as relatively poor, and 1% as middle in terms of quality. The results of spatial dispersion also revealed that water quality from the South to the North and North East was reduced. Evaluating the changes in water quality near landfill sites showed that 2149.56 square meters of total area had a relatively poor potential for the region’s groundwater recharge.


Page 6 from 8     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb