Search published articles


Showing 82 results for Quality

A. R. Vaezi, Y. Mazloom Aliabadi,
Volume 22, Issue 1 (6-2018)
Abstract

Water loss and nutrients loss are one of the important signs of natural resource degradation in the catchments. The amount of loss of these resources is affected by several factors including the characteristics of rainfall. In this study, the data of stream discharge (Q), total dissolve solids (TDS), and total nutrient loss ratio (NR) along with rainfall characteristics were analyzed for the events   from1988 to 2002 in the Tahamchai catchment, which is owned by a regional water company. Moreover, soil properties were determined by soil sampling from different points in the catchment surface. Based on the results, there was a significant correlation between Q of the river and rainfall height (r=0.24, p<0.05), while its correlations with the rainfall intensity and duration were not statistically significant. On the one hand, this result was due to the inverse relationship between rainfall intensity and rainfall duration; on the other hand, due to the temporal variations in vthe egetation cover in the area, it controlled Q in the intensive rainfalls. The highest Q was in spring (1.68 m3 sec-1) and March (2.58 m3 sec-1). In this period, rainfall height was high and the rainfalls interval was short. Moreover, vegetation cover was weak, so it could not control surface runoff and reduce Q in the catchment. TDS and NR also significantly varied during the months and their highest values were observed in December (282.55 mg l-1) and (61.77 mg l-1), respectively. Mg2+ had the highest amount of water loss in the catchment area. A negative correlation was found between Q and TDS (r=0.41, p<0.001) and NR (r=0.31, p<0.001). This study revealed that spring and autumn were the sensitive period for water loss and nutrient loss in the catchment, respectively. Therefore, promoting the vegetation cover in early spring and reducing improper agricultural practices (tillage and fertilization) could be substantial strategies contributing to conserving the catchment’s resources.


A. Ashraf Amirinejad, S. Ghotbi,
Volume 22, Issue 2 (9-2018)
Abstract

The soil quality is defined as the ability of soil to function as an essential part of the human habitat. In this study, the effects of land use change (conversion of forest lands into agricultural lands) on the soil physical quality were studied in the Gilan-e-Gharb region. For this study, soil samples were collected from surface and subsurface layers of both land uses, and the peak and shoulder slope positions, in Miandar and Vidjanan catchments. Soil physical properties such as soil texture and particle size distribution, soil hydraulic conductivity, bulk density, mean weight diameter of aggregates, water holding capacity, and the soil organic carbon content were measured. The results showed that land use change of the forest to agricultural lands resulted in a sharp decline in the soil organic matter (52%) and an increase in silt and sand percentage and soil bulk density. Also, deforestation decreased the mean weight diameter of aggregates (from 0.39 to 0.14 mm in Miandar) and clay percent.  It caused a reduction in the total porosity followed by a decrease of soil water holding capacity, and a decrease in the saturated hydraulic conductivity (from 10.34 to 1.86 cm/h), as well. In general, the results proved that the land use change from forest to agriculture severely decreased soil physical quality and its productivity.

F. S. Tarighat, Y. Kooch,
Volume 22, Issue 2 (9-2018)
Abstract

The effect of broad-leaved forest trees (Alnus glotinusa, Ulmus glabra, Popolus caspica and Parrotia persica) and their canopy position on soil C and N storage and mineraization in the plain forest areas of Noor was investigated. Soil samples were taken from two positions (near and away from the main stem) with the microplots of 30×30×15 cm. Litter (C and N), soil physical (bulk density, texture and water content), chemical (pH, EC, organic C, total N and available Ca), biochemical and biological (N mineralization and microbial respiration) characteristics were measured at the laboratory. Carbon mineralization rate (CMR) was calculated using the equation [incubation time period (hour) ×soil volume (gr) / CO2 amount (mol C)]. Soil C and N storage (ton/ha) was calculated by C and N contents, bulk density, and the soil sampling depth. The results showed that there was no significant difference between the C storage under the studied tree spcies, whereas N storage presented significantly greater amounts, under Alnus glotinusa (0.79 ton/ha) rather than Ulmus glabra, Popolus caspica and Parrotia persica (0.69, 0.45 and 0.21 ton/ha, respectively). The higher values of soil C (0.001 mol C/kg) and N (0.3 ml N/kg) mineralization were significantly recorded under Alnus glotinusa instead of tree species. Soil C and N storage and mineralization process were not affected by the sampling positions. According to the results, soil C and N storage and mineralization were influenced by litter quality and soil chemistry.

K. Esmaili, S. Seifi, H. Salari,
Volume 22, Issue 3 (11-2018)
Abstract

Settling basins are one of the most essential structures for the separation of inflow sediments. This structure is established to enhance the water quality after the river-basins and water channels. Numerous studies have been conducted on the design of this structure and different methods have been provided to increase its efficiency. However, the use of simple settling basins with the minimum cost which can provide the ideal targets has been the focus of designers. In this study, the effect of flow-guiding plates and the angle between these and the inflow, and the impact of water depth in the basin on the trap efficiency of the settling basins were considered. For testing, 4 blades with specific length and angle were installed. This experiment was repeated for 3 different lengths and 3 angles. The results of the experiments showed that with the enhancement of the depth of water to 10 centimeters to 30 centimeters, while the basin had no flow-guiding plates, increased the trap efficiency of the basin by 4.9 percent. Also, by the use of flow-guiding plates in the suitable and best length and angle (in this study, the suitable size of blades was 22.5 centimeters and the best position was by the angle of 30 degrees); with the maximum of the water depth of 30 centimeters, the trap efficiency was increased by 13.3 percent. The sensitivity analysis done showed that the depth of water had the most effect on the trap efficiency of the basin and the changes in the lengths and angles of the blades position had the similar effects of the basin trap efficiency.

Z. Abbasi, H. Azimzadeh, A. Talebi, A. Sotoudeh,
Volume 22, Issue 4 (3-2019)
Abstract

Groundwater quality evaluation is very necessary to provide drinking water. Groundwater excessive consumption can cause subsidence and penetration of saline groundwater into freshwater aquifers in Ajabshir Plain, on the Urmia lake margin. The main goal of the current project was to evaluate the groundwater quality by employing the qualitative indices of groundwater and GIS. Ten parameters of 15 wells including EC, TDS, total hardness as well as the concentration of Ca++, Na+, Mg++, K+, SO4--, HCO3- and Cl- were analyzed. At first, the maps of parameters concentration were prepared by the kiriging method. Then based on WHO drinking water standards, the maps were standardized and ranked for drawing the maps of quality indices. The results showed that quality index changes were in the range of moderate (61) to acceptable (81). Removing the single map method of sensitivity analysis detected the quality index was more sensitive to the K+ parameter. Finally, the quality index from the eastern north to the western south of Ajabshir Plain and the other areas was ranked in the acceptable and moderate classes, respectively.

P. Hadipour Nicktarash, H. Ghodousi, K. Ebrahimi,
Volume 22, Issue 4 (3-2019)
Abstract

One of the factors leading to the contamination of water resources is human activity, producing waste materials. In this paper, the effects of contamination on the water quality of Taleghan River, was simulated using of Qual2k model and the seasonal changes were evaluated. The qualified data collected during two months, August (as the dry season) and February (as the wet season), were used in the modelling. The results showed that the dissolved oxygen change was in the range of 4.5-6.52 mg/L in August. However, it changed between 4.8-5.3 mg/l in February and this reduction in the wet season was due to the run off deposition and the seepages of farmland near the river. Furthermore, BOD in the wet season and the dry season changed by 6-31 and 10-26 mg/l, respectively. These changes were due to the sewage dilution in flow during the wet season. Evaluation of the pH values in wet and dry seasons also showed that water of the river was more alkaline in the wet season, which is due to the effect of non-point resources or the fertilizer entrance after farm land bleaching by rain. Evaluation of Taleghan river EC variation also showed these changes were not significant during the wet and dry seasons. Water temperature was altered by 3-100C and 19-250C, respectively, in February and August.

M. Ghandali, K. Shayesteh, M. Sadi Mesgari,
Volume 23, Issue 1 (6-2019)
Abstract

Determination of water quality is an essential issue in water resources management and its monitoring and zoning should be considered as an important principle in planning. In this study, in order to investigate the quality of groundwater resources (springs, wells and qanats) in Semnan watershed, first, the water quality index for drinking and agricultural purposes was obtained by means of measuring SO4, Cl, Na, Mg, PH, EC, SAR, TDS in 55 groundwater sources. For calculating the parameters weight in WQI, the fuzzy hierarchy analysis process was used with the Chang's development analysis. Due to the lack of sampling points for zoning of the entire area, regarding the existence of EC data for the majority of groundwater resources used in this catchment (354 sources), as well as the high correlation (Adjusted R2=0.99) between WQI with EC, the mentioned indexes of other resources were estimated based on the regression relationship with EC. To analyze the spatial distribution and monitor the zoning of the groundwater quality, the ArcGIS version 10.3 and Geostatistical method such as simple Kriging and ordinary Kriging were used; additionally certain methods including Inverse distance weighting and Radial Basis Function were utilized. The performance criteria for evaluating the used methods including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), %RMSE and R2 were used to select the appropriate method. Our results showed that the ordinary Kriging and Radial Basis Function were the best methods to estimate the groundwater quality.

A. Hematifard, M. Naderi, A. Karimi, J. Mohammadi,
Volume 23, Issue 1 (6-2019)
Abstract

Assessment of soil quality helps to make a balance between soil function and soil resources, improving soil quality and achieving the sustainable agriculture. For the quantitative evaluation of soil quality in the Shahrekord plain, Chaharmahal va Bakhtiari province, 106 compound surficial soil samples (0-25 cm) were collected. After the pre-treatments of soil samples, 11 physico-chemical soil characteristics/indicators as the total data set (TDS) were measured using the standard methods. Statistical analysis showed the usefulness of Principle Component Analysis (PCA) transformation. The minimum data set (MDS) was selected using PCA. Analytical Hierarchy Process (AHP) was carried out for the quantitative determination of indicator priorities and weights. Soil quality of the samples was calculated by introducing TDS and MDS into Integrate Quality Index (IQI) and Nemero Quality Index (NQI). The results showed the soil quality of the land uses was as Rangelands> Drylands<Irrigated croplands. The correlation coefficient between IQI-TDS and IQI-MDS was 0.97, while this value for NQI-TDS and NQI-MDS was 0.98. The correlation coefficient between IQI-TDS and NQI-TDS was 0.87 and that between IQI-MDS and NQI-MDS was 0.91. Classification of the resulted soil quality map IQI-TDS revealed that 12.5 % and 15.5 % of the plain were in very high and low quality conditions, respectively.

F. Soroush, A. Seifi,
Volume 23, Issue 2 (9-2019)
Abstract

Evaluation of groundwater hydro chemical characteristics is necessary for planning and water resources management in terms of quality. In the present study, a self-organizing map (SOM) clustering technique was used to recognize the homogeneous clusters of hydro chemical parameters in water resources (including well, spring and qanat) of Kerman province; then, the quality classification of groundwater samples was investigated for drinking and irrigation uses by employing SOM clusters. Patterns of water quality parameters were visualized by SOM planes, and similar patterns were observed for those parameters that were correlated with each other, indicating a same source. Based on the SOM results, the 729-groundwater samples in the study area were grouped into 4 clusters, such that the clusters 1, 2, 3, and 4 contained 73%, 6.2%, 6.7%, and 14.1% of groundwater samples, respectively. The increase order of electrical conductivity parameter in the clusters was as 1, 4, 3 and 2. The results of water quality index based on the entropy weighting (EWQI) showed that all of the samples with excellent and good quality (36.3% of samples) for drinking belonged to the cluster 1. According to the Wilcox diagram, 435-groundwater samples (81.7%) in the cluster 1 had the permitted quality for irrigation activities, and the other 285-groundwater samples were placed in all four clusters, indicating the unsuitable quality for irrigation. The Piper diagram also revealed that the dominant hydro chemical faces of cluster 1 were Na-Cl, Mixed Ca-Mg-Cl and Ca-HCO3, whereas the clusters 2, 3, and 4 had the Na-Cl face. This study, therefore, shows that the SOM approach can be successfully used to classify and characterize the groundwater in terms of hydrochemistry and water quality for drinking and irrigation purposes on a provincial scale.

S. Jafari, M. Golsoltani, M. Lajmir-Orak Nejati,
Volume 23, Issue 3 (12-2019)
Abstract

The aim of this study was the effect of raw water quality on the efficiency of domestic reverse osmosis apparatus in Khuzestan province. The results showed that the purified water quality was related to the quality of entrance raw water. With increasing in salt concentrations (EC) or TDS, purification efficiency was decreased. The cation and anions content of refinery water was related to TDS and EC. The Ca/Na and Mg/Na were decreased due to refinery. The ability of these apparatus to reduction of two valence cations were more than mono valence. As same as this trend was observed for anions. Also, the comparison of the EC of raw water and refinery from these apparatuses had different EC from different raw water entrance. This means of these apparatuses had different efficiency with changes of raw water quality. Generally, domestic water purification systems have better performance in Karun river water treatment than in Kheiryrabad and Karkheh rivers.

F. Amirimijan, H. Shirani, I. Esfandiarpour, A. Besalatpour, H. Shekofteh,
Volume 23, Issue 3 (12-2019)
Abstract

Use of the curve gradient of the Soil Water Retention Curves (SWRC) in the inflection point (S Index) is one of the main indices for assessing the soil quality for management objectives in agricultural and garden lands. In this study Anneling Simulated – artificial neural network (SA-ANN) hybrid algorithm was used to identify the most effective soil features on estimation of S Index in Jiroft plain. For this purpose, 350 disturbed and undisturbed soils samples were collected from the agricultural and garden lands and then some physical and chemical soil properties including Sand, Silt, Clay percent, Electrical Conductivity at saturation, Bulk Density, total porosity, Organic Mater, and percent of equal Calcium Carbonate were measured. Moreover, the soil moisture amount was determined within the suctions of 0, 10, 30, 50, 100, 300, 500, 1000, 1500 KP using pressure plate. Then, the determinant features influencing the modeling of S Index were derived using SA-ANN hybrid algorithm. The results indicated that modeling precision increased by reducing the input variables. According to the sensitivity analysis, the Bulk Density had the highest sensitivity coefficient (sensitivity coefficient=0.5) and was identified as the determinant feature for modeling the S Index. So, since increasing the number of features does not necessarily increase the accuracy of modeling, reducing input features is due to cost reduction and time-consuming research.

H. Owliaie, F. Mehmandoost, E. Adhami, R. Naghiha,
Volume 23, Issue 4 (2-2020)
Abstract

The conversion of forests to agricultural lands generally has damaging effects on soil qualitative indices. This study was conducted to investigate the effects of land use change on the physico- chemical and biological characteristics of the soils of Mokhtar Plain, Yasouj Region. Five soil samples (0- 30 cm) were taken from three land uses of dense forest, degraded forest, and dry farming. The physical, chemical and biological analyses were carried out in a completely randomized design. The results showed that by following the change in the forest land use to dry farming, the EC (56%), organic matter (67%), total nitrogen (71%), exchangeable potassium (48%), Basal respiration (42%), exhaled respiration (63%), fungi community (23%), acid phosphatase (59%), and alkaline phosphatase (79%) were decreased in the dry farming land use. However, the bacterial community (20%) and pH (5%) were increased in the dry farming land use and the amount of available phosphorus did not show any significant difference, as compared to the dense forest. In general, it can be concluded that by following forest degradation and change in land use, soil organic matter and its related indices, especially biological ones, are more affected. So, in order to maintain soil quality, appropriate management practices such as managed land use change, avoidance of tree cutting, especially on steep slopes, preventing of overgrazing, and addition of organic matter should be carried out in dry farming land use.

Y. Sabzevari, A Nasrollahi,
Volume 23, Issue 4 (2-2020)
Abstract

One of the ways to increase water productivity in agriculture is the use of new irrigation systems; for the precise design of these systems, water quality assessment is needed. The purpose of this study was to study the groundwater quality of Khorramabad plain for the implementation of drip irrigation systems. The qualitative indices of EC, SAR, TDS, TH, Na and pH were related to the statistical years 2006-2012. In this research, the data were normalized first and it was determined that the data were abnormal; so, the logarithmic method was used for normalization. To evaluate the groundwater quality of the area, land use methods were used. Among different methods, the ordinary kriging interpolation method with the least root mean square error for all parameters was used. Quality zoning maps showed that in the north and southwest, EC and SAR concentrations were in poor condition in terms of qualitative classification. TDS had a concentration of more than 4000 milligramrels, and Na had a concentration of more than 15 milligrams / ltr. In these areas, TH with the concentration of more than 730 mg / l had the highest contamination; in the central area of the plain, there was a higher risk of carbonate sediments. LSI rates in the western regions were more than one, which included about 12% of the plain; there were restrictions on the implementation of droplet systems in these areas. The best quality for implementing these systems was located in the south-east of the plain, covering 19% of the plain. Finally, the integrated map of qualitative characteristics showed that the maximum concentration of qualitative characteristics was located in the northern, central and southern regions, which included 62.29% of the plain area.

R. Rakhshani, M. Farasati, A. Heshmatpour, M. Seyedian,
Volume 24, Issue 1 (5-2020)
Abstract

In this research, the impact of the Alagol wetland on the water treatment of Atrak River was studied. From June, 2016, to May, 2017, on the fifteenth day of the month, four samples of water were collected from the middle and the outlet of the wetland. Also, the wetland was fed only in the months of September, November and February. The parameters of acidity, electrical conductivity, phosphate, nitrate, dissolved oxygen, biochemical oxygen demand, chemical oxygen and ammonia were measured. The water pH at the entrance and exit was significantly different. EC was higher at the entrance, and its value was decreased in the middle and output. DO in the outlet of the wetland was higher than that in the middle and inlet, indicating the improved water quality and high dissolved oxygen in the wetland output. NO3, NH4, PO4, BOD and COD were higher at the entrance to the wetland; also, it was decreased in the outlet and middle, and the difference was significant. Further, according to the results of September, November and February, which were fed to the wetland, water quality in the middle and outlet of the wetland was improved toward the entrance of the wetland. According to the results, Alagol wetlands could reduce the phosphorus, ammonia, BOD, COD and DO, and their concentrations were lower than the limit. However, given that the salinity at the entrance of wetland was too high, its amount in the output was higher than the standard limit and the wetland could not significantly reduce salinity. The results of this study showed that that of water pollution in the inlet, except that the dissolved oxygen parameters and the temperature were high and decreased in the middle outlet. Due to the quality of the wetland outlet, Alagol wetland water could be used for fish farming centers.

P. Heidari, S. Hojati, N. Enayatzamir, A. Rayatpisheh,
Volume 24, Issue 3 (11-2020)
Abstract

The objective of this study was to investigate the impact of land use change (forest and rangelands to agriculture) on some micromorphological indices of soil quality in part of Rakat watershed, southwest of Iran. Accordingly, intact soil samples from 0-15 and 15-30 cm depths were collected from the above-mentioned land uses, and microstructure, type and abundance of voids, redoximorphic features, and humic substances were compared. The results showed that in the natural forest use, most of the voids are in the form of macropores, whereas after their conversion to agriculture, these types of voids have little development. In natural rangelands uses, voids were mainly oriented channels and of macropore type, but after switching from pasture to agriculture, they were mainly of vughy type. The results showed that natural forests (27.73%) and natural grasslands (22.28%) had more abundance of voids than forest to agriculture (19.01%) and grassland to agriculture (18.62%) land uses. In both natural forests and pasture land uses, various types of iron and manganese nodules, coatings, hypo-coatings, and quasi-coatings were significantly higher than agricultural land uses.

A. Ahmadpour, S. H. Mirhashemi, P. Haghighatjou, M. R. Raisi Sistani,
Volume 24, Issue 3 (11-2020)
Abstract

In this study, we used the ARIMA time series model, the fuzzy-neural inference network, multi-layer perceptron artificial neural network, and ARIMA-ANN, ARIMA-ANFIS hybrid models for the modeling and prediction of the daily electrical conductivity parameter of daily teleZang hydrometric station over the statistical period of 49 years. For this purpose, the daily data for the 1996-2004 period were used for model training and data for the 1996-2006 period were applied for testing. In order to verify the validity of the fitted ARIMA models, the residual autocorrelation and partial autocorrelation functions and Port Manteau statistics were used. PMI algorithm were   then used to model and predict electrical conductivity for selecting the effective input parameter of the neural fuzzy inference network and the artificial neural network. The daily parameters of magnesium (with two days delay) and sodium (with one day delay), heat (with one day delay), flow rate (with two months delay), and acidity (with one day delay) were obtained with the lowest values of Akaike and highest values of hempel statistics as the input of the neural fuzzy inference network and the artificial neural network for modelling daily electric conductivity predictions; then predictions were made. Also, models evaluation criteria confirmed the superiority of the ARIMA-ANFIS hybrid model with the trapezoidal membership function and with two membership numbers, as compared to other models with a coefficient of determination of 0.86 and the root mean square of 29 dS / m. Also, the Arima model had the weakest performance. So, it could be applied to modeling and forecasting the daily quality parameter of the tele Zang hydrometer station.

H. Noori Khaje Balagh, F. Mousavi,
Volume 25, Issue 3 (12-2021)
Abstract

In the present study, CanESM2 climate change model and stormwater management model (SWMM) were employed to investigate the climate change effects on the quantity and quality of urban runoff in a part of Karaj watershed, Alborz Province. The base period (1985-2005) and future period (2020-2040) are considered for this purpose. Based on the existing main and lateral drainage system and to be more accurate, the watershed was divided into 37 sub-watersheds by ArcGIS software. To simulate rainfall-runoff, the intensity-duration-frequency (IDF) curve has been prepared for a 2-hour duration and 10-year return period, for the base period and RCP2.6 and RCP8.5 climate change scenarios based on the obtained precipitation data from Karaj synoptic station. Results showed that mean 24-hour precipitation values in RCP2.6 and RCP8.5 scenarios will increase by 21% and 11%, respectively, and maximum 24-hour precipitation values will decrease by 17% and 23%, respectively, as compared to the observed values in the base period. Also, based on the results of quantitative and qualitative runoff modeling in the study watershed, and according to the outflow hydrograph in the RCP2.6 and RCP8.5 scenarios, the outlet runoff discharge will decrease by 5.8% and 7.1%, respectively. Also, the flooded areas in the watershed will decrease by 13% and 15.28%, respectively. The concentration of pollutants in the RCP2.6 and RCP8.5 scenarios, compared to the base period, including total suspended solids (TSS), will increase by 7.48% and 9.24%, total nitrogen (TN) will increase by 6.93% and 8.48%, and lead (Pb) will increase by 7.32% and 8.91%, respectively.

M. Amini,
Volume 25, Issue 4 (3-2022)
Abstract

Investigation and analysis of groundwater quality to monitor contamination and identify the most important pollutants and pollution points is one of the research fields. The objective of this research was to plan to improve groundwater quality on various spatial and temporal scales. Groundwater information of Maragheh-Bonab plain was collected from 26 wells in 10 years (2001-2011) with 454 sampling points from East Azerbaijan Regional Water Organization and was analyzed using multivariate statistical techniques such as DFA and PCA. Analyzed Variables are included Mg, Ca, Cation, K, Na, TDS, TH, SAR, EC, Anion, pH, Cl, SO4, CO3, and HCO3. Results of PCA showed that variables such as cation, HCO3، TDS، SAR، EC، Anion ،Cl, Ca, and TH were identified as important variables which they can great impacts on the groundwater quality of this region and in the other hand DFA showed which mentioned variables can discriminate land uses and geology formations in primary and normal distribution data with power discriminatory of 68.7 %, 92.2 %, and 66.5 %, 89.1 %, respectively. Investigation of the spatial position of elements using interpolation technique in Maragheh-Bonab plain showed that variables concentration in lowlands are high and 20 villages and their surrounding farms are exposed to high contamination risk of groundwater.

N. Moradian Paik, S. Jafari,
Volume 26, Issue 4 (3-2023)
Abstract

Changes in land quality factors were investigated according to the change in land use of two conventional cropping systems in Khuzestan (Dimcheh region, periodic cultivation system, sugarcane, forest, and deforesting in Zaras region). The results showed that by the change of forest land use, organic carbon from 0.93 to 0.55%, cation exchange capacity (CEC) from 19.6 to 13.3 cmol/kg, C/N from 7.4 to 3.8%, the mean weight diameter of aggregate (MWD) from 1.7 to 1.3%, and microbial respiration from 0.11 to 0.06 mg of CO2 /gr of soil per day decreased and in contrast, the dispersible clay from 4.6 to 19.3% increased. PCA analysis for the parameters showed that five factors justified more than 90% of the variance in the values of FC, PWP, AW, and AF. In the Dimcheh region, the average volumetric moisture content of FC from 31.3% to 27.3%, available water from 12.9% to 9.8%, dispersible clay from 56.1% to 12.3%, and bulk density reduced from 1.6 to 1.4%, organic carbon from 0.45 to 0.78%, C/N from 6.3 to 10.0%, microbial respiration from 0.01 to 0.04 mg of CO2 /gr soil per day and MWD of aggregates increased from 0.77 to 1.3 mm. Five factors including FC, AW, BD, DC, and OM explained more than 90% of the variance.

A.r. Emadi, R. Fazloula, S. Zamanzad-Ghavidel, R. Sobhani4, S. Nosrat-Akhtar,
Volume 27, Issue 3 (12-2023)
Abstract

As one of the most necessary human needs, groundwater resources play a key role in the economic and political processes of societies. Climatic and land-use changes made serious challenges to the quantity and quality of groundwater resources in the Tehran-Karaj study area. The main objective of the present study is to develop a method based on individual intelligent models, including adaptive neural-fuzzy inference system (ANFIS), gene expression programming (GEP), and combined-wavelet (WANFIS, WGEP) methods for temporal and spatial estimation of total hardness (TH), total dissolved solids (TDS), and electrical conductivity (EC) variables in the groundwater resources of the Tehran-Karaj area for statistical period of 17 years (2004-2021). The results showed that 
combined-wavelet models have higher performance than individual models in estimating three selected variables. So that the performance improvement percentage of the WANFIS model compared to ANFIS and WGEP model compared to GEP, taking into account the evaluation index of root mean square error (RMSE) were obtained (23.713%, 18.018%), (12.581%, 33.116%), and (6.433%, 12.995%) for TH, TDS, and EC variables, respectively. The results indicated a very high spatial and temporal compatibility of the estimated values of the WGEP model with the observed values for all three qualitative variables in the Tehran-Karaj area. The results showed that the concentration of qualitative variables of groundwater resources from the north to the south of the study area has an upward trend for all three qualitative variables. In urban areas, pollution caused by sewage and population increase, as well as in agricultural areas, the use of chemical fertilizers and their continued infiltration into groundwater resources and 
over-extraction of groundwater resources aggravate their pollution. Therefore, in the study area, climatic changes and the type of land use are strongly related to the quality of groundwater resources.

Page 4 from 5     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb