Search published articles


Showing 345 results for Soil

Z. Noori, M. A. Delavar, Y. Safari,
Volume 24, Issue 4 (2-2021)
Abstract

The present study was intended to improve the chemical properties of a saline-sodic soil using the individual application of alfalfa residue and two biochars produced from sugarcane bagasse and walnut shell, at the weighting ratio of 5%; their concomitant application with gypsum, aluminum sulfate and the mixture of these two chemical amendments was considered. The experiment was conducted in three replications using the factorial experiment in a completely randomized design. After four months of incubation, the soil samples were measured for their main chemical properties. The results showed that alfalfa residues were the most effective treatment to reduce the soil pH; so the concomitant application of this organic amendment with gypsum lowered the soil pH from 9.13 in the control (untreated soil) to 7.24. It was also observed that the addition of gypsum and/or aluminum sulfate to the soil led to the increase of the soil electrolyte concentration and consequently, the increase of soil electrical conductivity to three times greater than control, through an increase of ions, like calcium and sulfate in the soil solution. Increasing the soluble sodium concentration by replacing exchangeable sodium by other similar ions showed that the studied treatments enhanced the sodium adsorption ratio (SAR), which could be regulated by washing. Concomitant application of the walnut-shell biochar with gypsum had the most increasing effect on the soil SAR, enhancing it from 22.6 in the control to 54.3. Potassium was released from organic amendments, improving the soil general conditions; addition of chemical amendments elevated soil exchangeable potassium contents; however, the elevated soil available phosphorus contents were less influenced by chemical amendments application. As the conclusion, it seems that the positive impacts of the applied chemical and organic amendments would supplement each other; as a result, the concurrent use of both treatments not only improves the bad soil chemical properties, but also enhances the soil fertility.

H. R. Matinfar, Z. Mghsodi, S. R. Mossavi, M. Jalali,
Volume 24, Issue 4 (2-2021)
Abstract

Knowledge about the spatial distribution of soil organic carbon (SOC) is one of the practical tools in determining sustainable land management strategies. During the last two decades, the utilization of data mining approaches in spatial modeling of SOC using machine learning algorithms have been widely taken into consideration. The essential step in applying these methods is to determine the environmental predictors of SOC optimally. This research was carried out for modeling and digital mapping of surface SOC aided by soil properties ie., silt, clay, sand, calcium carbonate equivalent percentage, mean weight diameter (MWD) of aggregate, and pH by machine learning methods. In order to evaluate the accuracy of random forest (RF), cubist, partial least squares regression, multivariate linear regression, and ordinary kriging models for predicting surface SOC in 141 selected samples from 0-30 cm in 680 hectares of agricultural land in Khorramabad plain. The sensitivity analysis showed that silt (%), calcium carbonate equivalent, and MWD are the most important driving factors on spatial variability of SOC, respectively. Also, the comparison of different SOC prediction models, demonstrated that the RF model with a coefficient of determination (R2) and root mean square error (RMSE) of 0.75 and 0.25%, respectively, had the best performance rather than other models in the study area. Generally, nonlinear models rather than linear ones showed higher accuracy in modeling the spatial variability of SOC.

B. Torabi Farsani, M. Afyuni,
Volume 25, Issue 1 (5-2021)
Abstract

Compost leachate is a liquid resulting from physical, chemical and biological decomposition of organic materials. The main objective of this study was to evaluate the influence of leachate compost on the physical, hydraulic and soil moisture characteristic curves. Also, the effect of leachate on the aerial organ fresh weight of corn was investigated. Leachate was added to clay loam and sandy clay loam soils at the rate of zero, 1.25 and 2.5 weight percent. The soil water characteristic curve and the estimation of the parameters of the van Gnuchten and Brooks and Corey models were performed using RETC software. Leachate increased the bulk density and decreased the available water of the clay loam soil. Only 1.25% of the leachate increased the available water in the sandy clay loam soil. Two levels of leachate decreased the bulk density of sandy clay loam soil. Leachate decreased the saturation hydraulic conductivity of the clay loam and increased this parameter of sandy clay loam soil. Leachate was more successful in increasing the aerial organ fresh weight of corn in the sandy clay loam soil. Therefore, leachate was more useful in sandy clay loam than in clay loam soil, and 1.25% treatment was better in the sandy clay loam soil. Also, the used leachate increased the repellency of both soils. Leachate caused the parameters of van Gnuchten and Brooks and Corey models to increase, as compared to the control in both soils.  

N. Hasanzadeh, L. Gholami, A. Khaledi Darvishan, H. Yonesi,
Volume 25, Issue 1 (5-2021)
Abstract

Soil erosion is one of the most serious environmental issues in the world, causing soil degradation, reduction of land productivity, increasing flood, water pollution and pollutions transportation; it is also a serious threat to sustainable development in the world. Therefore, the soil conservation and the prevention of soil erosion and use of conditioners as the nanoclay can be considered as a solution to improve   land productivity and protect environment. The present study was, therefore, conducted to address the effect of the application of montmorillonite nanoclay with three rates of 0.03, 0.06 and 0.09 t ha-1 on changing runoff and soil loss variables under laboratory conditions. The results showed that the nanoclay with the rate of 0.03 t ha-1 could decrease the runoff coefficient, soil loss and sediment concentration with the rate of 40.65, 88.38 and 82.19 percent, respectively. The average of soil loss in control treatment and conservation treatments of nanoclay with various rates was measured to be 3.76, 0.44, 1.33 and 3.16 g, respectively. Also, the results showed that the most sediment concentration was the control treatment with the rate of 5.84 g l-1 and the conservation treatments with nanoclay in the applied rates was 1.04, 3.47 and 2.96 g l-1, respectively. Also, the results showed that the nanoclay effect was significant on changing the soil loss and sediment concentration at the level of 99 percent. Finally, due to the effect, the use of this conditioner in natural conditions and investigation of the effects on environment and aggregates stability are recommended.

F. Saniesales, S. Soltani, R. Modarres,
Volume 25, Issue 2 (9-2021)
Abstract

Several indices are used for drought identification and quantification. In this paper, the new Standardized Palmer Drought index (SPDI) was introduced and then the drought condition of Chaharmahal-Va-Bakhtiari Province was studied using this index. For this study, 11 synoptic, climatology, and evaporation meteorology stations were selected. Essential information in this investigation includes monthly temperature, monthly precipitation, and soil moisture measurement. To estimate SPDI, moisture departure, was first calculated on a monthly time scale. Then, converted to cumulative moisture departure values in different time scales including 3, 6, 9, 12, and 24 months. The best statistical distribution (GEV) was then fitted to cumulative departure. These values were then standardized to have the SPDI. The results showed that, as soil moisture affects SPDI estimation, it will be more valid for analyzing and monitoring drought conditions, especially for agricultural drought. Also, the results showed that 2000, 2001, and 2008 years were the driest time in this Province from 1988 to 2012. Moreover, drought frequency was found out in the western half of the Province more than in the other parts.

A. Motamedi, M. Galoie,
Volume 25, Issue 2 (9-2021)
Abstract

The annual soil erosion in different regions of the world has been estimated using various empirical and numerical methods whose accuracy is very dependent on their utilized parameters. One of the most common methods in the evaluation of the mean annual soil erosion especially in sheet and furrow regions is the USLE method. In this relationship, almost all factors that normally affect the soil loss process such as land cover, slope, precipitation, soil type, and support practice parameter of soil have been employed but, in this research, it was shown that the accuracy of this method in mountainous areas covered by rock and snow is somewhat low. To do this, a part of the Tibet plateau in China, where observation soil loss data were available, was selected for investigation. To implement the numerical and analytical analysis, many maps including DEM, NDVI, orientation, soil type, mean monthly and annual precipitation for 30 years were collected. For increasing the accuracy of the model, the cover management parameter was extracted from high accuracy NDVI maps and all USLE parameters were calculated in ArcGIS. The final results were shown that the amount of annual soil loss which was estimated by the USLE method is more than the observed data which were collected by Chinese researchers. This is because the large areas of the study area are covered by lichen and snow where soil loss due to the erosion process is very low but these regions cannot be recognized from NDVI maps. Also, the analysis of the NDVI maps was shown that the relationships of Fu, Patil, and Sharma were not suitable for soil loss estimation in elevated mountainous areas. If the other relationships such as Lin, Zhu, and Durigon are used for the regions with a height of more than 5500 m, a new correction coefficient needs to be used for the C factor which was calculated as 0.2 for the study area.

H. Motaghian, M. Shirmohammadi, A. Hosseinpur,
Volume 25, Issue 2 (9-2021)
Abstract

Iron (Fe) is an essential micronutrient for plants and its deficiency occurs in calcareous soils. However, a suitable extractant for the estimation of plant-available Fe and its critical level in calcareous soils depends on the type of soil and plant. The objective of the present study was to evaluate several chemical extractants to estimate available Fe and its critical level for corn growing in calcareous soils from Chaharmahal-Va-Bakhtiari Province. The amount of available Fe was measured by DTPA-TEA, AB-DTPA, 0.01 M calcium chloride, Mehlich IІ, and Mehlich ІІI extractants. At the end of the experiment, corn was harvested, and dry weight, Fe concentration in the plant, and the amount of Fe uptake by corn were determined. Extracted Fe had a significant correlation with all extractants used with maize indices. . The highest correlation coefficients were determined between the DTPA-TEA (0.32-0.94) and AB-DTPA (0.43–0.96) methods and the plant indices. The results of this research showed that the DTPA-TEA and AB-DTPA methods were the most suitable extractants for predicting available Fe content in these soils and the critical level of Fe extracted by these extractants was 2.81 and 3.67 mg kg-1.

A. Vaezi, E. Zarrinabadi, Y. Salehi,
Volume 25, Issue 3 (12-2021)
Abstract

The effective use of rainwater is a key issue in agricultural development in arid and semi-arid regions. The tillage system as an important soil management measure can affect the rainwater retention, soil moisture content, and in consequence crop yield in rainfed lands. This study was conducted to evaluate the effects of slope gradient and tillage direction on rainwater use efficiency (RWUE) in rainfed lands in Zanjan Province. The field experiment was performed in five slope gradients (12.6, 15.3, 17, 19.4, and 22%) and two tillage directions (along slope and on contour tillage) at two replications. Mass soil water content was determined at 5-day intervals and runoff was measured after rainfalls. Wheat grain yield was determined for each plot and RWUE was computed using the proportion of wheat grain yield and precipitation. Base on the results, runoff, soil moisture, wheat grain yield, and RWUE were affected by tillage directions, so that runoff in contour line tillage decreased about 6.4 times compared to along slope tillage and in consequence increased soil moisture, wheat grain yield, and RWUE about 8.7, 24.8, and 24.8%, respectively. Increasing runoff production in contour line tillage at steeper slopes was associated with a lower capacity of cultivated furrows that strongly declined soil water retention and negatively affected wheat grain yield and RWUE in the lands. This study revealed that the efficiency of the contour tillage in water retention and RWUE decreases in steeper slopes in rainfed lands.

P. Khosravani, M. Baghernejad, A. Abtahi, R. Ghasemi,
Volume 25, Issue 3 (12-2021)
Abstract

Soil classification in a standard system is usually defined based on information obtained from properties and their variations in different map units. The aim of this study was to compare soil genesis and morphological characteristics in different landforms with WRB and Soil Taxonomy (ST) Systems. From nine studied profiles, six profiles were selected as representative profiles and dug in Colluvial fans, Piedmont plain, and Alluvial plain physiographic units, respectively. Then, the soils were classified according to the pattern of the two systems. Also, variation analysis of variance (ANOVA) and comparing means were used to quantify interested soil properties. The results of soil physio-chemical properties at different landform positions were significant based on analysis of variance of the effect of physiographic units and soil depth at the level of 1 %. Soil classification results based on WRB indicated that WRB were recognized four reference soil groups (RSG) included Regosols, Cambisols, Calcisols, and Gleysols at the first level of WRB classification in comparison of ST with recognizing two order Entisols and Inceptisols could separate more soils. The soils were located on the alluvial plain with a high groundwater level in the WRB due to the creation of restrictive conditions for root development in contrast to the ST called “Aquepts” in the suborder level but in a WRB is classified as the “Gleysols” RSG. On the other hand, ST, unlike WRB, used the Shallow criteria at the family level to describe the shallowness of soils and the limitations of root development. Generally, the efficiency of each system varies despite the differences in their structure and depending on the purpose of using them.

L. Gholami, A. Khaledi Darvisan, N. Karimi,
Volume 25, Issue 3 (12-2021)
Abstract

Soil loss can cause many intra-regional and extra-regional problems, on the other hand, the effect of soil moisture on processes of soil loss and sediment yield for the identification and simulation of soil hydrological response is necessary. Therefore, the application of soil conditioners is essential for soil and water conservation. The present study was conducted to investigate the effect of soil conditioners of vermicompost and nano-manure on variables of soil loss and sediment concentration at moistures of air-dried, 15 and 30%, and rainfall intensities of 50 and 90 mm h-1. The obtained results in addition to confirmation of the significant effect of each conservation treatment at the level of 99 percent on the intended components showed that the conservation treatment of vermicompost compared to nano-manure treatment had more effect on measured variables. Also, the conservation treatment of vermicompost could decrease the soil loss at soil moisture air-dried, 15, and 30 percent with rates of 72.15, 66.63, and 78.76 percent (50 mm h-1), respectively, and 45.01, 35.57, and 10.45 percent (of 90 mm h-1), respectively. The effect of conservation treatments, soil moistures, and rainfall intensity and the interaction effects of conservation treatments × rainfall intensity and rainfall intensity × soil moisture on changes of soil loss and sediment concentration were significant at the level of 99 percent. The application of vermicompost and nano-manure had acceptable results on studied parameters but the vermicompost effect was more than nano-manure. Therefore, due to the widespread use of different types of conditioners, nowadays, it is needed to move the application feasibility of conditioners such as vermicompost and nano-manure that these have not the adverse effects of environmental.

M.h. Rahimian, J. Abedi Koupaei,
Volume 25, Issue 3 (12-2021)
Abstract

Soil salinization is a phenomenon that threatens agricultural lands and natural areas, leading to reduced productivity, declinations of soil resources and vegetation covers, and finally, the abandonment of these areas. This study has quantified the groundwater Capillary Rise (CR) and actual Evapotranspiration (ETa) and their relationship with the soil salinity of Azadegan plain, west of Khuzestan Province. The study area has an arid climate, characterized by shallow and saline water table and a high potential evaporation rate. For this purpose, field samplings were carried out in four consecutive seasons of the year to measure salinity, soil moisture, and texture, groundwater table, and salinity at 27 scattered representative points of the study area. The CR values were estimated in different seasons of the year using UPFLOW model. Moreover, four representative Landsat satellite images were acquired to map seasonal changes of ETa through the SEBAL algorithm. Then, the effects of ETa on CR and consequent soil salinity build up were quantified in a seasonal time scale. The results showed that the average daily ETa of Azadegan plain varied from 1.55 to 7.96 mm day-1 in different seasons which caused a capillary rise of around 1.2 to 1.5 mm.day-1. This has led to the upward movement of 12 to 18.8 ton ha-1  month-1 of salts from shallow groundwater to the soil surface, which has caused surface soil salinization. Also, there was a close relationship between ETa, CR, and soil salinity parameters, which can provide insight into modeling of spatial and temporal changes of soil salinity and provision of solutions to reduce the accumulation of solutes in the soils of the study area.

R. Jafari, H. Sanati,
Volume 25, Issue 3 (12-2021)
Abstract

The southern regions of Kerman Province have repeatedly encountered dust storms. Therefore, the objective of this study was to identify dust sources using effective parameters such as vegetation cover, land surface temperature, soil moisture, soil texture, and slope as well as to detect dust storms originating from these regions based on 31 MODIS images in 2016 and SRTM data. After normalizing parameters, the dust source map was prepared by fuzzy logic and assessed with an error matrix and available dust source map. Results showed that 30.5% of the study area was classified as a low source of dust, 39.55% as moderate, and 29.85% as severe-very severe. The overall accuracy of the produced map was about 70% and the producer and user accuracy of the severe-very severe class was more than 87%. The detection of dust storms originated from the identified dust sources also confirmed a crisis situation in the region. Due to the repeatability and continuity of obtained dust source map at pixel scale, it can be used to update available dust source maps and manage dust crisis in the region, properly.

A.r. Vaezi, E. Mohammadi,
Volume 25, Issue 4 (3-2022)
Abstract

This study was conducted to investigate the temporal variations of runoff and rill erosion in various soil textures under different slope gradients. So, a laboratory experiment was set up in three soil textures (loam, clay loam, and sandy clay loam) and four slope gradients (5, 10, 15, and 20%) using the completely randomized design with three replications. Runoff production and rill erosion were measured at a flume with 4 m×0.32 m in dimensions using a simulated water flow with 0.5 lit min-1 in discharge during 30 min. Results indicated that runoff and rill erosion and their interaction were significantly affected by soil texture and slope gradient (P < 0.001). Significant relations were found between rill erosion and runoff both in three soils and four slope gradients, and the strongest relations were in loam (R2= 0.86) and 15% slope gradient (R2= 0.94). Runoff and rill erosion varied considerably in the soil textures and slope gradients during the experiment. A 10-min pick time was found for runoff and rill erosion. In contrast to runoff, rill erosion appeared an irregular and gradual increasing pattern during the experiment which was associated with the frequency of transportable soil particles. Clay loam had more sensitive particles due to a higher percentage of fine particles and weaker structure, and most of them were washed in early times, and finally, rill erosion was reached to a constant pattern. This study revealed that temporal variation patterns of runoff and rill erosion are influenced by soil type (texture and structure) and slope gradient.

M. Mohammadi, B. Lorestani, Soheil Sobhan Ardakani, M. Cheraghi, M. Kiani Sadr,
Volume 25, Issue 4 (3-2022)
Abstract

Polychlorinated biphenyls (PCBs) can adversely affect human and environmental health according to long-term half-life and persistence in the environment. Therefore, this study was conducted to detect, identify, and health risk assessment of PCBs in surface soils collected from the vicinity of Arad-Kouh processing and disposal complex, Tehran, in 2020. A total of 30 surface soil samples was collected from 10 sampling sites near the Arad-kouh complex. After extraction of analytes, the gas chromatography/mass spectrometry (GC–MS) method was used to determine PCBs in soil samples. Based on the results, 15 congeners of PCBs were detected in the analyzed soil samples. Also, the minimum, maximum, and mean concentrations of total PCBs (µg/kg) were 269, 434, and 359, respectively. Moreover, the results of PCA and significant contribution values of low molecular weight homologs indicated that the presence of PCB compounds in the soil samples was connected with combustion processes in the soil. Besides, as among the detected PCBs, the TEF values only established for PCB105 showed that exposure to contaminated soil could be lead to a moderate level of carcinogenic risk through PCB105. Given that PCBs have adverse effects on the environment and human health, detecting, determining the concentration, source identification, and periodical monitoring of these compounds in different mediums to human health maintenance is strongly recommended.

S. Salehi, A.r Esmaili, K. Esmaili,
Volume 25, Issue 4 (3-2022)
Abstract

The objective of this study was to investigate how the earth dam is destroyed due to the effect of upstream and downstream slope of the body in overflow conditions. Therefore, eight models were provided that each model is constructed from the embankment dam with different upstream and downstream slopes (1:1, 2:1) and the soil properties (Sc) on breach formation. The time and method of dam break for flood discharges were investigated. The results showed that the upstream side slope of the embankment dam has less effect than the downstream side slope on the scour process resulting from the phenomenon and by increasing the downstream side slope of the embankment dam, the amount of erosion in the scour hole increases 28 %. Then, using nonlinear regression, relationships were presented to estimate the output flow rate and the location of the waterfall. A to the erosion and formation of the waterfall inside the body of sticky earth dams, two main outlines of the great waterfall and a series of waterfalls were presented. Finally, the formation of these waterfalls due to the effect of shear stress created during sediment erosion relative to the critical shear stress of the dam constituents was investigated and evaluated. Considering the limitations based on shear stress, the formation status of the type and the leaching pattern of the body of the cohesive earth dams during the overpass were estimated. Then, a general plan was presented to predict the behavior of the overflow stream in homogeneous and sticky soil.

A.r Modares Nia, M. Mirmohamad Sadeghi, A. Jalalian,
Volume 25, Issue 4 (3-2022)
Abstract

Desertification has become one of the main problems of human societies living in the vicinity of desert areas in recent years. One of the methods that have been considered in recent years and are rapidly expanding in the field of soil mechanics is the Microbial Induced Carbonate Precipitation (MICP). In this method, urea-positive organisms that are naturally present in the soil can stabilize the soil and improve its engineering parameters by using urea and calcium chloride. Recently, attempts have been made to use this method to create a crustal layer on the soil to prevent wind erosion. In the present study, the effect of environmental conditions in deserts such as temperature and sand bombardment on microbial soil treatment has been investigated using this new method. The soil of the Segzi region as one of the main centers of dust in the Isfahan region was studied in this research. Therefore, the improved samples are subjected to regional temperatures which increased the surface layer resistance with increasing temperature. Also, the sandstorm conditions of the region were simulated using three different grain sizes of sand inside the wind tunnel. The results of these experiments showed that stabilized soil could withstand the conditions at wind speeds of 7 and 11 m/s. However, by increasing the wind speed to 14 m/s and the grain size, the crustal layer destroys and increases the wind erosion of the soil. Also, the resistance of the surface layer increased by increasing temperature in the tested samples. This increase in resistance continued up to 24 degrees with a high slope, but from 24 degrees onwards, this slope decreases. Based on the results of this research, it can be said that the microbial improvement method can be used as an alternative method in the future to stabilize desert soils.

A.r. Nourafar, A. Pahlavanravi, M. Nohtani, V. Rahdari,
Volume 26, Issue 1 (5-2022)
Abstract

Wind erosion is one of the most important natural processes in arid and semi-arid regions. Sistan plain has a hyper-arid climate and is one of the windy regions of the country. Due to the soil characteristics of the Sistan plain, wind erosion is very intense in this region. In this study, the relationships between some soil's physical and chemical properties and wind erosion were investigated in different land cover in a part of the central region of Sistan in 2018. A map of land cover in five classes was prepared using the results of field studies and the classification of satellite images. Fifty soil samples at a depth of 10 cm were collected to investigate the physical and chemical soil properties and the wind erosion threshold was determined at each location using a portable wind tunnel device. Also, the relationship between physical and chemical soil properties including soil texture, soil moisture, specific apparent weight, EC, SAR, ESP, Na+, k+, with the speed of wind erosion threshold was investigated. According to the results, the highest and the lowest threshold speed were 8.2 and 3.8 m s-1 and occurred in agricultural lands and hilly lands, respectively. The results of this study indicated that the velocity of wind erosion threshold in different lands adjacent to sandy areas is less than the average of that cover. Also, the soil texture, EC, and SAR have the most significant effect on soil wind erodibility at P <0.05 in the study area.

E. Sabbagh Tazeh,
Volume 26, Issue 1 (5-2022)
Abstract

The utilization of organic amendments in the reclamation of saline-sodic soils can reduce the necessity for the application of chemical Ca+2 sources. In this research, soil leaching experiments were conducted in CRD as split factorial. The main factors were 1) amendment type including manure and compost, 2) amendment rate including 1, 3, and 5 percentage w/w, and 3) leaching stage with 5 levels including without leaching, once, twice, three times, and four times leaching, every time with one pore volume and with 30 days’ intervals. All columns were incubated for 30 days after the addition of amendments and then were leached. The parameters in each column were studied in three depths as a subplot. After 120 days, EC and ESP of soils amended with both types of conditioners reduced under 5 dS m-1 and 15%, respectively. After 150 days, the exchangeable K and Mg were reduced by both conditioners. Exchangeable Ca increased significantly in both amendments at the end of the 5th month. The efficiency of 1% by weight of two conditioners in improving the salinity and sodicity characteristics of soils was the same as other rates. There was not a significant difference between leaching by 3 and 4 pore volume in both conditioners in the most of parameters. In leaching treatment with three pore volumes using 1 percentage w/w of manure and compost, soil EC decreased by 80% and 71% and soil ESP by 44.5% and 35%, respectively.

N. Azadi, F. Raiesi,
Volume 26, Issue 1 (5-2022)
Abstract

Biochar as an efficient strategy for the improvement of soil properties and organic waste management may reduce the potential effects of abiotic stresses and increase soil fertility. However, the effects of this organic amendment on soil microbial indicators under combined salinity and pollution have not been studied yet. Therefore, the objective of this study was to evaluate the influence of sugarcane bagasse biochar on some soil bioindicators in a Cd-polluted soil under saline and non-saline conditions. A factorial experiment was carried out with two factors, including NaCl salinity (control, 20 and 40 mM NaCl) and sugarcane bagasse biochar (soils unamended with biochar, amended with uncharred bagasse, 400 oC biochar, and 600 oC) at 1% (w/w) using a completely randomized design. Results showed that salinity increased the mobility of Cd (12-17%), and subsequently augmented its toxicity to soil microorganisms as indicated by significant decreases in the abundance and activities of the soil microbial community. Conversely, sugarcane bagasse biochar application reduced the concentration of soil available Cd (14-18%), increased the contents of soil organic carbon (89-127%), and dissolved organic carbon (4-70%), and consequently alleviated the effect of both abiotic stresses on soil microbial community and enzyme activity. In conclusion, this experiment demonstrated that the application of sugarcane bagasse biochar could reduce the salinity-induced increases in available Cd and mitigate the interaction between salinity and Cd pollution on the measured soil bioindicators.

M. Masoomi, M. Pourgholam-Amiji, M. Parsinejad,
Volume 26, Issue 1 (5-2022)
Abstract

In this study, the Drainmod-S model was used to vary soil salt concentration and the effect of underground drainage on the amount of leaching in a physical model (large lysimeter). A soil extractor was installed at depths of 40, 50, and 70 cm at a distance of 35 cm from the drainage to measure the salinity of the soil solution. In this study, three scenarios were applied including salinity profiles under conventional conditions (mid-season and end-season drainage), soil salinity profiles under different drainage conditions, and prior scenarios with saline irrigation. The second and third scenarios were applied in four drainage stages, respectively. These stages include transplanting and mid-season drainage (days 15 to 20), mid-season drainage (days 35 to 40), mid-season and end-season drainage (days 55 to 60), and end-season drainage (days 75 to 80). The results showed that after simulating the total solute concentration overtime at a depth of 40 cm and comparing it with the measured values, the coefficient of determination (R2) was 0.77 indicating an acceptable Drainmod-S model simulation. This parameter for simulating solute concentration at 50 and 70 cm depth was 0.76 and 0.75, respectively. The mean absolute error parameter (MAE) value was also negligible.


Page 16 from 18     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb