Search published articles


Showing 72 results for Efficiency

M. Ghorchiani, Gh. Akbari, H. A. Alikhani, M. Zarei, I. Allahdadi,
Volume 17, Issue 63 (6-2013)
Abstract

In order to evaluate the effect of arbuscular mycorrhizal (AM) fungi and Pseudomonas fluorescens bacteria on phosphorus fertilizer use efficiency, mycorrhizal dependence and grain yield and dry matter yield of maize under water deficit conditions, a field experiment was conducted as split-split plot arrangement based on randomized complete block design with three replications. The treatments in this experiment were included as follows: irrigation (normal irrigation and water deficit stress based on evaporation from class A pan evaporation) combined different seed inoculations with AM and Pseudomonas fluorescens and treatment of chemical phosphate fertilizer (non- consumption of phosphate fertilizer, consumption of 50 percent of triple superphosphate fertilizer needed, and consumption of rock phosphate, based on the quantity of consumed phosphorus of triple superphosphate source). The results showed that effects of irrigation, seed inoculation with AM and Pseudomonas fluorescens biological phosphate fertilizer and chemical phosphate fertilizer were significant on yield and yield components, dry matter yield, relative agronomic efficiency and root colonization. Mild stress significantly reduced grain yield, relative agronomic efficiency and fertilizer agronomic efficiency compared to optimum irrigation. Results showed that grain and dry matter yield are highly correlated with root colonization under mild stress condition. Maximum mycorrhizal dependence was obtained in mild stress condition. Maximum relative agronomic efficiency, fertilizer agronomic efficiency, yield and yield components was related to seed inoculation with AM and Pseudomonas fluorescens. The use of triple superphosphate fertilizer were increased grain yield in comparison with rock phosphate along with inoculation of phosphate solubilizing microorganisms. However, maximum root colonization and mycorrhizal dependence was achieved in non- consumption treatment of phosphate fertilizer.
R. Malekian, J. Abedi-Koupai, S. S. Eslamian, M. Afyuni,
Volume 17, Issue 63 (6-2013)
Abstract

Nitrogen (N) loss from irrigated cropland, particularly sandy soils, significantly contributes to nitrate contamination in surface and groundwater and increases N applications to crops. This is because negatively charged nitrate normally does not have much affinity to soil particles. To retard the movement of nitrate, materials should have high affinity for anions, which most naturally occurring minerals do not have. The cation-exchange properties of natural zeolites can be exploited to modify their surface chemistries so that other classes of compounds, particularly anions and non-polar organics are retained. In this study, the ability to remove nitrate from aqueous solutions with different Cl- concentrations using Iranian zeolite (Semnan) modified by hexadecyltrimethylammonium bromide in millimeter and nanometer particle sizes was determined and the equilibrium isotherms were characterized. The nitrate release as affected by time and ionic strength was also evaluated. It was demonstrated that SMZ is capable of adsorbing more than 60 mmol kg-1 and 80 mmol kg-1 nitrate in millimeter and nanometer sizes, respectively, and adsorbed nitrate can be easily released under different ionic strengths. The millimeter and nanometer-sized SMZ showed 26.7% to 82.3% and 37.8% to 85.5% nitrate removal efficiency, respectively. The average of nitrate released by millimeter-sized SMZ was 6.92 mmol kg-1 in deionized water while it was 14.68, 22.71, and 34.91 mmol kg-1 in releasing solutions with ionic strengths of 0.03, 0.1, and 0.3 M, respectively
Vajiheh Dorostkar, Majid Afyuni, Amirhossein Khoshgoftarmanesh,
Volume 17, Issue 64 (9-2013)
Abstract

Limited information is available about the effect of preceding crop residues on bioavailability of zinc (Zn) in calcareous soil and its accumulation in wheat grain. In this experiment, residues of five crops including safflower (Carthamus tinctorius L.), sunflower (Helianthus annuus L.), bean (Phaseolus vulgaris L.), clover (Trifolium pretense L.) and sorghum (Sorghum bicolor L.) were incorporated into a calcareous Zn-deficient (0.5 mg kg-1) soil. A treatment without crop residue was also used in the experiment. This experiment was conducted in research greenhouse of Isfahan university of technology in 2010. Two wheat cultivars (Triticum aestivum cvs. Backcross and Kavir) differing in Zn-efficiency were studied in the experiment. Incorporating crop residues into the soil resulted in an increase of grain Zn concentration in both wheat cultivars although this increase was dependent on the preceding crop type. The greatest increase of grain Zn concentration occurred in the sorghum residues treatments. Although application of crop residues significantly decreased grain phytic acid to Zn molar ratio (as Zn bioavailability criteria for consumers), this ratio was still higher than 15, the critical Zn bioavailability level for consumers in foods. According to the results, despite the increase in the total Zn content, the bioavailability of Zn in wheat grain was not affected by crop residue treatments.
L. Divband, S. Boroomand Nasab, M. Behzad, J. Abedi Koupai,
Volume 17, Issue 65 (12-2013)
Abstract

Heavy metals in water resources are one of the most important environmental problems in most of countries. Up to now, various methods for removing these metals including using low price materials have been used. In this study, two new absorbents (zizyphus spinachristi leaf and its fly ash) were studied for adsorption of cadmium from aqueous solutions using batch experiments. The effect of contact time, pH, and amount of adsorbent on adsorption efficiency was evaluated and the best kinetic and isotherm model was determined. Results showed that optimal absorption of pH was 5 and 6 for zizyphus spinachristi leaf and its fly ash, respectively. The equilibrium time was 45 min for zizyphus spinachristi leaf and 30 min for ash. Adsorption efficiency was increased by increasing the adsorbent dose. By comparing the parameters of isotherm models, it was observed that the cadmium adsorption capacity of fly ash (4.27 mg/gr) was higher than that of zizyphus spinachristi (3.91 mg/gr).
B. Daneshbakhsh, A. H Khoshgoftarmanesh, H. Shariatmadari,
Volume 17, Issue 65 (12-2013)
Abstract

This research was carried out in a hydroponic culture to investigate the effect of Zn nutrition on phytosiderophore release by roots of three bread wheat genotypes (Triticum aestivum L. cvs. Rushan, Kavir, and Cross) differing in Zn-efficiency. The wheat seeds were germinated in sterile sand and two weeks later the plants were transferred to nutrient solution containing different Zn levels. Phytosiderophore released by plant roots was collected ten days after applying Zn treatments and measured using resin-Cu-mobilization test. A month after their transfer to nutrient solution, the plants were harvested and Fe and Zn concentrations in root and shoot were measured, and total amounts (uptake) of these nutrients were determined. Zinc addition increased concentration and total amount of Fe and Zn in shoot in Rushan genotype, while it had no significant effect on concentration and total amount of Zn in shoot and root of Kavir and Spring Back-Cross-Rushan genotypes. Addition of Zn to the nutrient solution decreased concentration and total amount of Fe in shoot of all wheat genotypes. On the other hand, Zn nutrition increased root Zn concentration in Rushan and Kavir genotypes, while it resulted in significant decrease of root Zn concentration in Back-Cross-Rushan genotype. Effect of Zn nutrition on the amount of phytosiderophore release by roots of wheat genotypes was different. Zinc nutrition resulted in an increase of phytosiderophore release by roots of Rushan, while it had no significant effect on phytosiderophore release in other wheat genotypes.
A. Mohammadkhani, M.r. Nouri Emamzadeh, A. Mirjalili,
Volume 17, Issue 66 (2-2014)
Abstract

Four partial root zone drying (FULL, 1PRD50, 2PRD50, 3PRD50) treatments were investigated on tomato characteristics and water use efficiency using completely randomized design with five replications. In the control treatment (Full irrigation), all water requirement of plant was met in the root area equally during the growing season. Roots in 1PRD50, 2PRD50 and 3PRD50 treatments were divided into two equal parts and each side of root was irrigated one, two and three times, respectively. Results showed that the highest (44.43 g) and lowest (24.57g) tomato mean weights were obtained at full irrigation and 3PRD50, respectively. Maximum of diameter (43.1 ml) and fruit number (46 No) was observed in the control and minimum of these traits (15.6 ml and 20 No, respectively) was observed in 3PRD50 treatment. There was a highly significant difference between fruit number in all treatments. Highest yield and marketable yield was obtained in the control and 1PRD50 treatment, respectively. The highest irrigation water use efficiency was obtained in 1PRD50 (48 percent more than the control) and the lowest value was in 3PRD50 (27 percent lower than the control). Based on results of this study, partial intermittent irrigation (1PRD50) is recommendable for tomato production.
E. Maroufpoor, M. Parvini,
Volume 17, Issue 66 (2-2014)
Abstract

One of the most important issues in trickle irrigation design is investigating the emitter's characteristics, the effect of factors on flow rate, and finally appropriate emitter selection. Therefore, in this study nine types of pressure compensating emitters with codes of A, B, C, D, E, F, G, M and N, made based on trickle irrigation physical model were tested and the effects of four different water temperatures (13, 23, 33 and 43°C) with different pressure ranges (between zero and 1.2 times more than the maximum pressure) on the emitters were evaluated. All experiments were carried out based on ISO 9261 standard and IRISI 6775 standard of the Institute of Standards & Industrial Research of Iran. The obtained results at all the tested temperatures, no emitter has x more than 0.2 and all emitters were pressure compensating types. The effect of temperature on the flow rates of models F, M and N was significant at 95% confidence level. Increase in temperature showed an increase in the flow rates of the above mentioned models.
A. Heidari, A. Hemmat, S.m Rezvani,
Volume 18, Issue 67 (6-2014)
Abstract

efficiency was investigated during a 2-year period (2009-2010) in a silty clay loam soil in Tajarak Research Station (Kaboudarahang Township), Hamedan. The experimental design was a strip-plot within a randomized complete blocks design. The horizontal band, the irrigation water rate after flowering, included full and deficit irrigation (100% and 75% potato water requirement) and the vertical band, kind of inter-planting row tillage including 1- subsoiling to 30-35 cm soil depth, 2- chiseling to 20-25 cm soil depth, 3- sweeping to 5 cm soil depth and 4- no-till. During the growing season, soil mechanical resistance (cone index) in two stages and water infiltration into the soil were measured. At the end of the growth season (harvesting time), potato yield quantity and quality were measured. Result showed that the effect of inter-row tillage on soil mechanical resistance was significant. Subsoiling and chiseling had lower soil mechanical resistance and higher water permeability between treatments, respectively. The effect of inter-row tillage on potato yield was significant so subsoiling and chiseling had a higher potato yield between treatments, respectively. The effect of irrigation water rate on potato yield was not significant. The effect of inter-row tillage on water use efficiency wasn’t significant.
S. Samadvand, M. Tajbakhsh, K. Anvari, J. Ahmadaali,
Volume 18, Issue 70 (3-2015)
Abstract

An experiment was performed at the Miyandoab Agricultural Research Station to study yield and water use efficiency of furrow and tape irrigation systems in one-row and two-row planting patterns, and to investigate density of grain corn SC704. The experimental design was a completely randomized block arranged in Strip Split Plots with three replications in 2010. Irrigation treatments were applied in vertical plots, and planting arrays of different densities were applied in horizontal plots in the form of split plots. The vertical plots were comprised of four irrigation treatments, including three levels (80%, 100% and 120%) of water requirement by use of drip tape irrigation and 100% of water requirement in furrow irrigation, and the horizontal factor was a planting array in the form of single-row and two-row planting patterns and the sub factor was comprised of three levels: 75, 90 and 105 thousand plants per hectare. The results showed that furrow irrigation had the highest rate of grain yield, about 18.6 ton per hectare, and the treatments of tape irrigation of 120%, 100% and 80% had 18.4, 18.2 and 14.9 tons per hectare, respectively. Although the furrow irrigation treatment had higher yield than the rest, there was no significant difference between treatments except for the 80% of tape irrigation. Thus, by utilizing tape irrigation without a great decrease in the yield, water use efficiency improved. The comparison between treatments of tape irrigation of 80%, 100%, 120% and furrow irrigation led to grain yields of 2.3, 2.2, 1.9 and 1.4 kg/m3, respectively. Also, the highest water use efficiency and maximum yield were obtained from 90000 plants per hectare.


D. Akbari Nodehi,
Volume 18, Issue 70 (3-2015)
Abstract

In order to investigate the effects of furrow irrigation and amount of irrigation water on yield and water use efficiency of corn, an experiment was conducted as a split plot based on a randomized complete block design with three replications for a period of two years at Agriculture Center of Mazandaran. Treatments included three levels of 100, 80 and 60 percent water requirement as the main treatments, and three irrigation methods included fixed every-other- furrow, alternative every-other- furrow and every-furrow irrigation as the subsidiary treatments. Statistical analysis of the results of two years' data showed that treatment with 100% water requirement with every-furrow irrigation and treatment with 60% irrigation water requirement with fixed every-other-furrow had the highest and lowest yield, respectively. The highest water use efficiency was in 60 percent irrigation water requirement with a fixed every-other- furrow treatment and the lowest water use efficiency was related to the treatment with 100 percent irrigation water requirement with alternative every-other- furrow. The value of ky was obtained 0.8 for the total growth stage.


S. Heydari Soreshjani, M. Shayannejad, M. Naderi, B. Haghighati,
Volume 19, Issue 73 (11-2015)
Abstract

In order to investigate the effect of different levels of irrigation on qualitative and quantitative yield and determine the corn's optimum depth of Irrigation in sShahrekord, a randomized complete block design experiment was done with 7 treatments including 40, 55, 70, 85, 100, 115 and 130 percent of soil moisture deficit and three replications in furrow irrigation. Effects of irrigation levels on yield, water use efficiency, weight of dry matter, plant height, stem diameter, median diameter, length and weight of corn were significant. Different levels of irrigation had no significant effect on seed oil and protein content, but their impact on plant fiber content was significant. With increasing depth of irrigation, stem length, grain weight and plant fiber content increased. The minimum and maximum corn yield were related to 40 and 130% of full irrigation with the yield of 43.1 and 88.1 tons per hectare, respectively. The maximum and minimum use efficiencies were 55 and 130% of full irrigation treatments with values ​​of 16.17 and 10.1 Kg per cubic meter, respectively. The result of economic analysis showed that the water consumption is 5/582 mm, equivalent to 86% full irrigation depth.


M. M. Matinzadeh, J. Abedi Koupai, H. Nozari, A. Sadeghi Lari, M. Shayannejad,
Volume 20, Issue 76 (8-2016)
Abstract

In this research, a comprehensive simulation model for water cycle and the nitrogen dynamics modeling including all the important processes involved in nitrogen transformations such as fertilizer dissolution, nitrification, denitrification, ammonium volatilization, mineralization, immobilization as well as all the important nitrogen transportation processes including nitrogen uptake by the plant, soil particles adsorption, upward flux, surface runoff losses and drain losses, was used for fertilizer management modeling in a sugarcane farmland in Imam Khomeini Agro-Industrial Company using a system dynamics approach. For evaluating the model the data collected from Imam Agro-Industrial Company equipped with a tile drainage system with shallow ground water and located in Khuzestan province, Iran, were used. The statistical analysis of the observed and simulated data showed that the RMSE for determining the accuracy of simulation of the nitrate and ammonium concentration in drainage water is 1.73 mg/L and 0.48 mg/L, respectively. The results indicated that there is good agreement between the observed and the simulated data. Nine scenarios of fertilization at different levels of urea fertilizer were modeled including one scenario of 400 kg/ha, two spilit scenarios of 350 kg/ha, two spilit scenarios of 325 kg/ha, two spilit scenarios of 300 kg/ha, one scenario of 280 kg/ha and one scenario of 210 kg/ha. Results of the modeling showed that the scenario of 210 kg/ha has the highest nitrogen use efficiency (52.3%) and the lowest nitrogen losses consisted of denitrification, ammonium volatilization and drainage losses (17.82, 7.16 and 92.59 kg/ha, respectively). The results revealed that increasing the consumption of urea fertilizer greater than 210 kg/ha increased the overall nitrogen losses and reduced the nitrogen use efficiency. Meanwhile, this model can be used for managing the fertilizer and controlling the nitrate and ammonium concentrations in the drainage water to prevent the environmental pollution. Also, the system dynamics approach was found as an effective technique for simulating the complex water-soil-plant-drainage system.


H. Asadi, M. Aligoli, M. Gorji,
Volume 20, Issue 78 (1-2017)
Abstract

This study aimed to investigate the dynamic changes of rill erosion and evaluate the ability of Hairsine-Rose model in estimation of sediment concentration. The experiments were carried out at the Soil and Water Conservation Research Station of Tehran University in Kuhin, Qazvin. Four flow rates were tested at three slopes in trapezoidal hand-made rills of 3 m long and 5 cm base width. Outflows were sampled periodically to determine changes in sediment concentration. The experiments were repeated in early autumn and mid spring. Sediment concentration showed a dynamic change with time which was affected by flow rate, slope and season. The sediment concentration was high in the first few minutes of the experiment but over time, dropped and finally reached a more or less stable state. The effects of flow rate and slope were more detectable on sediment concentration at the early unsteady conditions than at the final steady conditions. Though the temporal trends were similar, the sediment concentration was generally higher in autumn than in spring. Hairsine-rose model showed a better performance at lower flow stream powers but generally over predicted sediment concentration showing a systematic error probably due to model formulation.


S. Vaseghi, M. Valinejad, M. Afyuni,
Volume 21, Issue 3 (11-2017)
Abstract

Nitrogen use efficiency is relatively low in irrigated rice fields because of rapid N losses from ammonia volatilization, the nitrification, surface runoff, and leaching in the soil-flood water system. Since the plant N represents the total N supply of all sources, plant N status will be a good indicator of N availability to crops at any given time. Leaf colour chart (LCC) is a simple portable diagnostic tool, to determine the timing of N top dressing. LCC was developed to increase the N use efficiency at irrigated rice fields. A field experiment was carried out to compare the effect of N split application and LCC on the grain yield and agronomic and recovery efficiency of Fajr variety in 2009. The experiment was conducted in a randomized complete block design with 12 treatments in 3 replications on Fajr cultivar. Twelve treatments included control treatments (without nitrogen fertilizer) and 45, 90, 135 kg N ha-1 for three times each and two treatments included LCC treatments 4 and 5. As a result, all treatments showed significant (p=0.05) grain yield increase in comparison to control. Increased yield was observed up to 135 kgN/ha (55.2%). Grain yield of LCC treatments was higher than split treatments. LCC treatment 5 had higher AE, RE, PE, PFP and IE than LCC 4 and fixed – 135 at the less N rate in all fields. Therefore, the results of different fertilizer treatments showed that the LCC treatment 5 with maximum grain yield, agronomic, physiological, internal and relative efficiency factors can be considered as the best management method for using nitrogen fertilizer and preventing from excess use of nitrogen fertilizer in Fajr cultivar. 
 


A. R. Vaezi, M. Ahmadi,
Volume 21, Issue 3 (11-2017)
Abstract

Modified Universal Soil Loss Equation (MUSLE) is one of soil loss estimation models which has been developed based on the runoff characteristics in the event scale. However, it needs to be evaluated in the plot scale for the semi-arid rainfall events. With this aim, a field study was designed using twenty one plots. Runoff and soil loss were measured using 5-min samples under seven rainfall intensities consisted of 10, 20, 30, 40, 50 60, and 70 mm h-1 for 60 min. Soil loss was estimated using the MUSLE based on the runoff volume (Q) and runoff peak discharge (qp) and the values were compared with the observed values. The estimated soil loss was about 3.89 times bigger than the observed value on average. In order to improve model estimations, the power of rainfall erosivity index was modified from 0.56 to 0.62, (Q qp)0.62. The modification of the MUSLE model improved model efficiency (ME) from -5.5 to 0.47 and decreased the root mean square error from 0.000137 to 0.000031. This study revealed that the MUSLE overestimates soil loss from the small plots in the semi -arid regions. Therefore it is essential to calibrate runoff erosivity index using the data observed in the area. The modified MUSLE can be reliably used to predict soil loss in the small plot scale in semi-arid regions.
 


N. Nourmahnad,
Volume 22, Issue 2 (9-2018)
Abstract

Due to the water scarcity in Iran, it is important to provide strategies to reduce water consumption in the agriculture sector. Zycosil is a nanotechnology material that makes a great hydrophobe in the soil. This study was conducted based on completely randomized block design within microlysimeter with the height of 15 cm and the diameter of 8 cm to investigate the hydrophobic effect on the amount of consumed water in pepper. Sweet pepper seedlings were planted in them; then the treatments were applied. The Z25, Z50 and Z75 treatments consisted of  covering 25, 50 and 75 % of the soil surface by Zycosil; these were compared with  the control (Ctrl- no Zycosil application) in three replications. The results showed that Z75 treatment reduced 27% water consumption and increased the fresh yield by approximately 62 %. The increased yield of Z25 and Z50 was 5 and 26 %, respectively. Dry pepper yield was increased in Z25, Z50 and Z75 treatments by 22, 19 and 80%, respectively, as compared to Ctrl treatment. The amount of water consumed was decreased by 10 % per 25% coverage level. The least amount of water use efficiency was observed in the control treatment (1.28 gr/cm3). The Z75 had the highest water use efficiency (2.96 gr/cm3). Hence, the application of hydrophobic material such as Zycosil in the soil surface reduced water evaporation and increased water retention. This increased the yield and water use efficiency.

F. Sajadi, H. Sharifan, S. Jamali,
Volume 22, Issue 3 (11-2018)
Abstract

Yield is a function of root distribution and activity. In flood conditions, root growth and efficiency are essential for crop productivity. The goal of this study was to investigate the effect of different irrigation regimes on the root development, yield and yield components of green pepper (green Hashemi cultivars). This study, which was based on a completely randomized design with three replications under greenhouse conditions, was done at Gorgan University of Agricultural Sciences and Natural Resources in 2016. Different irrigation regimes consisted of 3 levels (100, 125 and 150 percent of water requirement). The results showed that the effect of different irrigation regimes on root volume, root length, root area and number of fruit was significant at 1 percent level (P<0.01), but water use efficiency, and fresh and dry weight of fruit were significant at 5 percent level (P<0.05). The results also revealed that green pepper plants were sensitive to over irrigation. Increasing irrigation levels from 100 to 125 percent of pan evaporation resulted in the reduction of root volume, root length, water use efficiency, number of fruits, and pepper fresh weight to 20, 13.8, 26, 29and 6.4 percent, respectively. As the conclusion, with the increase in water irrigation level, the fresh weight of the fruit was significantly decreased.

R. Jamali, S. Besharat, M. Yasi, A. Amirpour Deylami,
Volume 22, Issue 3 (11-2018)
Abstract

The irrigation and drainage network of Zarrinehroud with an area of 65,000 hectares is the most important network of Lake Urmia basin, with the direct link to the lake. With the current crisis in the lake, an assessment of the existing network's performance is essential in the Urmia Lake Rescue Program. The purpose of this study was, therefore, to evaluate the transmission, distribution, and utilization efficiency and irrigation efficiency at the surface of the network. Three products were selected from the cultivar with the highest crop area (10% beet, 22% and 22%, and 38% wheat). The dominant method of irrigation was surface irrigation. At the network level, soil moisture in the field before and after irrigation, soil physical and hydraulic properties and water use volume for irrigation were measured. The results showed  that the average transmission efficiency in canals with the concrete coating of the network was about 79%, which was  in the range of 33% (in the  smaller channels) to 100% (in the  larger channels). The water distribution efficiency in the network was, on average, 76%, varying from 50% to 100%. Water use efficiency in the fields based on soil moisture balance analysis varied from 41% in the sandy loam soils to 66% for the clay texture. Based on the analysis of the data on the amount of harvest, production costs and product sales price, the water use efficiency (in kilograms of product per cubic meter of water used) varied from 0.4 for the  elderly hay to 5.1 for the  sugar beet. The amount of water used in this network (in Rials per cubic meter of water consumption) was between 2740 for alfalfa aged over 10 years and 6900 for wheat. It can be concluded that in the case of water constraints, wheat, sugar beet and alfalfa could be the most economic cultivar, respectively.

N. Salamati, H. Dehghanisanij, L. Behbahani,
Volume 23, Issue 1 (6-2019)
Abstract

In order to investigate the effect of water quantity in subsurface drip irrigation on water use efficiency of palm yield and yield components, and determining suitable irrigation treatments for three different date cultivars, a split plot experiment design in a randomized complete block design with three replications were applied for three cropping years (2013-2016), at Behbahan Agricultural Research Station. The applied irrigation water in three levels based on 75, 100 and 125 percent of water requirement in the main plots and three cultivars of Kabkab, Khasi and Zahidi dates were compared in sub plots. The irrigation level of 75% with 0.646 kg of dates per 1 cubic meter of water in terms of water use efficiency as compared to the other two levels of irrigation showed a significant superiority. The Khasi cultivar with 83.9 pips and 29.2929 fruits in the cluster ranked first. The irrigation level of 125% with 11.1% were higher in fruit moisture, and 100% and 75% irrigation levels with 9.6% and 7.8% moisture content were the next. The irrigation level of 125% for Kabkab cultivar with a volume of 11.1 cubic centimeters were ranked first. Optimizing water use and reducing it to 10606 cubic meters per hectare in irrigation level of 75% water treatment will save water consumption. If the basis for comparing the amount of water used in 100% water treatment is considered, then the use of subtropical drip irrigation reduces water consumption by 2509.6 and 5019.2 cubic meters per hectare, respectively, compared to 100 and 125% water requirements.

A. R. Alipour, S. H. Mosavi, A. Arjomandi,
Volume 23, Issue 2 (9-2019)
Abstract

Increasing the productivity and conservation of limited water resources in the agricultural sector, especially in the agricultural sub-sectors, is closely related to the revision of the traditional approaches of production system in the agricultural sector of developing countries. The aim of this study was to develop the optimal combination of crop production in Varamin Agricultural and Animal Husbandry Complex as one of the leading agricultural units in the agricultural sector of Varamin County with the emphasis on increasing water use efficiency. For this purpose, the statistical data and information of the 2015-2016 crop year of the complex were used in the framework of the multi-criteria decision making model. The results showed that in the optimum crop pattern in this unit, the priorities of maximizing net energy production and the annual profit as the economic goals would be significantly aggregated with the goal of increasing water use efficiency. Accordingly, in the optimum condition, net energy production was increased by 10%, gross profit was improved by 4%, and water use efficiency was promoted by 15%. Therefore, according to the results, it is suggested that, in order to achieve the economic aspirations and increase water use efficiency in Varamin Agricultural and Animal Husbandry Complex, wheat, alfalfa, silage and maize corn, based on the values calculated in this study, constitute the main combination of the crop production pattern.


Page 3 from 4     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb