Search published articles


Showing 35 results for Stability

R Karimizade, B Vaezi, T Hoseyn Por, A Mehraban, H Ghojagh,
Volume 13, Issue 48 (7-2009)
Abstract

Multi-environment trial data are required to obtain stability performance parameters as selection tools for effective cultivar evaluation. The interrelationship among several stability parameters and their associations with mean yield, along with the repeatability of these parameters in consecutive years was the objective of this study. Barley yield data of 18 cultivars, proprietary of Dryland Agricultural Research Institute, evaluated in 12 locations over 2005-2007 in three locations of Iran was used for the combined analysis of variance in three datasets. I: Across locations in a single evaluation year (dataset A), II: Across locations in each of two single evaluation year (dataset B), III: Across all locations in three years (dataset C). For each dataset, cultivar phenotypic variance and other statistics were appropriately partitioned in its components. The interrelationship among the parameters and their associations with mean yield based on Spearman rank correlation was studied in each of the three single evaluation years (dataset A). Rank correlation coefficients were also used as estimates of the repeatability of these stability parameters across two year combinations (dataset B). The parameters 2 σi Shukla and 2 Wi were consistently highly correlated with each other but not with mean yield in all single and pair evaluation years. The parameters bi , 2 Si and CV were consistently highly correlated with each other but not with mean yield in all single and pair evaluation years. Result showed that Shukla variance, Wricke ecovalence, SIPC1 and ASV AMMI stability statistics have high repeatability. Thus it is suggested that more stability statistics especially nonparametric methods be used for determination of repeatability methods.
F. S. Moosavi , F. Raiesi ,
Volume 14, Issue 54 (1-2011)
Abstract

Although the crucial function of earthworms in improvement of soil physical properties is well -know, but very little is known of the interactive influence of earthworms and organic materials on soil properties such as soil aggregate stability, particularly in arid and semi-arid soils. The low organic matter content and the significant role of earthworms in improving physical properties of arid and semi-arid soils necessitate studying the interactive effects of organic materials and earthworms. Thus, the main objective of this study was to identify the interactive effects of anecic earthworm (Lumbricus terrestris L.) and various organic residues (including alfalfa, compost, mixture of alfalfa and compost and cow dung) on soil aggregate stability expressed as the Mean Weight Diameter (MWD), Geometric Mean Diameter (GMD) and Aggregation Ratio (AR), and furthermore soil Ca and Mg contents. The experiment consisted of a 2×5 factorial treatment organized in a completely randomized design with four replications under controlled greenhouse conditions, lasted for 150 days. Results showed that earthworm inoculation and organic materials addition alone increased significantly all the indices of soil aggregation and aggregate stability, and Ca and Mg contents. However, the combined use of earthworms and organic residues resulted in more stable aggregates. Results indicated that earthworm inoculation in the presence of organic materials resulted in 39, 58, 2, 67, 43 and 74% increases, respectively in MWD, AR, GMD, Ca, Mg and macroaggregates whereas microaggregates were reduced by 13.5% in earthworm-worked soils. We observed a significant relationship (R2=0.945) between soil Ca content and MWD, demonstrating that earthworms apparently excrete calcite that helps bonding clay particles and soil organic matter via cationic (Ca+2) bridging. In summary, results of this study show that the simultaneous applications of anecic earthworms and organic materials may considerably help in improving the structure of arid and semi-arid soils with low carbon level.
M. Ajami, F. Khormali,
Volume 15, Issue 57 (10-2011)
Abstract

Biological soil covers such as lichens have critical roles in soil stability and prevention of erosion. In order to study the effect of lichen biological covers on aggregate stability and soil conservation, loess hills covered with lichen and uncovered ones were selected in Northern Golestan Province. Five samples were taken from the depth 0 to 5 cm of both two areas for physico-chemical analyses. The undisturbed soil samples were taken for micromorphological studies, too. Analyses of soils revealed that soil organic carbon content increased markedly, compared to uncovered soils. Mean weight diameter also increased about three folds in soils covered with lichen. Fungal hyphae and polysaccharides excretions bind soil particles together and increase size of aggregates. Micromorphological study of thin sections showed that uncovered soils had a weak and massive structure, but soils covered with lichen had a crumb granular and also well -separated angular block and higher proportion of voids. Due to the effect of lichen on upward movement of calcium carbonate, crystallitic b-fabric appeared in the surface layer of covered soils and speckled b-fabric underneath. Excremental pedofeatures are the most common pedofeatures in the covered soils.
M. Nikpur, A. A. Mahboubi, M. R. Mosaddeghi, A. Safadoust,
Volume 15, Issue 58 (3-2012)
Abstract

The effects of soil intrinsic properties on soil structural stability were evaluated. Soil samples (33 series) with wide ranges of properties and structural stability were collected from Hamadan province. Two structural stability indices were used: mean weight diameter (MWD) using Yoder method and De Leenheer-De Boodt index (DDI). Wetting pre-treatments (fast wetting to saturation and slow wetting to a matric suction of 30 kPa) were applied before wetting. Linear and multiple regression relations of MWD and DDI with the soil intrinsic properties (organic matter, clay, fine clay, silt, sand, calcium carbonate, EC and pH) were assessed. Results showed that organic matter had the highest impact on the two mentioned indices. Following organic matter, clay, fine clay and calcium carbonate were ranked respectively one after another. Fast wetting caused a higher aggregate break-down, due to its destructive energy, air entrapment, and non-uniform swelling of the soil whereas slow wetting exhibited better differentiation of soils with low structural stability. The findings of this research demonstrated high agreement (R2>75%) between the MWD and DDI, recommended both to be used for evaluating of the aggregate stability in Hamedan province
N. Ghorbani Ghahfarokhi, Z. Kiani Salmi, F. Raiesi, Sh. Ghorbani Dashtaki,
Volume 17, Issue 63 (6-2013)
Abstract

Free and uncontrolled pasture grazing by animals may decrease soil aggregate stability through reductions in plant cover and subsequent soil organic C, and trampling. This could expose the soil surface layer to degradation and erosion. The objective of this study was to determine the influence of pasture management (free grazing, controlled grazing and long-term non-grazing regimes) on aggregate-size distribution and aggregation parameters by wet and dry sieving methods in two native pastures, protected areas in Chaharmahal va Bakhtiari province. The studied pastures were 1) SabzKouh pastures protected from grazing for 20 years, and 2) Boroujen pastures protected from grazing for 25 years. Soil samples were collected from 0-15 cm depth during the grazing season in summer 2008. Samples (finer than 2 mm) were analyzed for aggregate-size distribution and aggregation parameters by wet and dry sieving methods. Results showed that pasture management had a significant influence on aggregate-size distribution and aggregation parameters in the two areas. The two methods indicated that macro-aggregates in non-grazing and controlled grazing regimes were higher than those in free grazing regime, whereas in free grazing management micro-aggregates showed an opposite trend, and were greater compared with the other grazing regimes. Similarly, soil aggregate stability indices (i.e. mean weight diameter, aggregate geometric and ratio mean diameter) were all improved by non-grazing regimes, suggesting that animal grazing and trampling break down large soil aggregates due largely to compaction and reduced plant coverage. However, the extent to which grazing affects soil aggregation depends in large part on grazing intensity and duration, and the area involved.
R. Karimi, M. Hassan Salehi, F. Raiesi,
Volume 18, Issue 69 (12-2014)
Abstract

Improper use of rangelands may lead to their destruction. Therefore, the conversion of these degraded rangelands to agricultural lands and other land uses may improve their soil quality. The purpose of the present study was to evaluate the impact of cultivation in the degraded rangelands on some soil characteristics in Safashahr region of Fars province. Four land uses including the rangeland with sparse vegetation (degraded rangeland), the rangeland converted to agricultural land over 17 years, the agricultural land converted to apple orchard for 4 years and also to an apple orchard for 40 years were selected. Samples were randomly taken from each land use at two depths (0-20 and 20-50 cm) with five replications. The results revealed that land use change significantly increased organic matter and MWD in both soil depths. Bulk density and water dispersible clay increased in agricultural land and new orchard while a decrease was observed for old apple orchard. It is suggested the traditional farming to be replaced with new cultivation methods like minimum tillage and no tillage. Overgrazing of the rangelands must also be avoided.


M. Mollaei, H. Bashari, M. Basiri, M. R. Mosaddeghi,
Volume 18, Issue 70 (3-2015)
Abstract

Soil aggregate stability is considered as a key indicator of soil quality and health assessments in rangelands. Many factors and properties such as soil texture, organic carbon, calcium carbonate, sodium adsorption ratio, and electrical conductivity might affect soil aggregate stability. The effects of these factors on aggregate stability of 71 soil samples collected from 4 rangeland sites (2 in semi-arid and 2 in arid lands) in Isfahan province were investigated. Aggregate stability was measured using the wet-sieving method. To optimize the trial conditions for the investigated soils, three shaking times (5, 10 and 15 minutes) were used to impose different hydromechanical stresses on the aggregates of ten soils selected out of the studied soils. The structural stability was assessed using mean weight diameter (MWD) and geometric mean diameter (GMD) of the water-stable aggregates. Significant differences of MWD were observed between the shaking times. The 10-min shaking was selected as best for structural stability assessment in the studied regions because it resulted in better differentiation of soils on the basis of structural stability. Among the intrinsic properties, soil organic carbon content had the most important role in aggregate stability in all zones. However, electrical conductivity (in addition to organic carbon content) had an important role in aggregate stability in the arid rangelands. Log-normal distribution and GMD could represent better the aggregate size distribution when compared with normal distribution and MWD in the studied regions. Overall, wet-sieving method with shaking time of 10 min is suggested to assess the soil structural stability in rangelands of Isfahan province. Therefore, soil aggregate stability and the factors affecting this vital indicator can be used efficiently for assessing and monitoring management effectiveness and rangeland functionality trend.


M. Bahari, A. Shahnazari,
Volume 19, Issue 72 (8-2015)
Abstract

Transporting borrow materials for proper infrastructure of water channels to bear the load of such structures is important in the development plans. Therefore, in this research clay nanocomposite material with a weight ratio of %1 was added to the soil. Soil sample was taken from the bed of the C25 canal (distributary of GanjAfrooz diversion dam within Alborz project area) at various intervals and the depth of 1 meter. Unconfined compression strength and consolidation tests were performed on the selected soil. The results showed that the addition of nanoclay to the soil increased the rate of shear resistance, cohesion property and compressibility of soil, respectively, equal to 14.13, 14.13and 82.76 percent. Also, angle of failure and ultimate void ratio decreased. As a result, the addition of nanoclay to the soil makes soil strength and stability greater and there are no problems caused by bed erosion and transporting of borrow material for infrastructure of channel.
M. Kermanpour, M. R. Mosaddeghi, M. Afyuni , M. A. Hajabassi,
Volume 19, Issue 73 (11-2015)
Abstract

Petroleum pollution is an important environmental issue in most of the countries especially those have an oil industry. This study was conducted to investigate the effect of petroleum pollution on soil water repellency and its relation to soil structural stability in Bakhtiardasht area, Isfahan. Polluted and adjacent non-polluted locations were selected to be representative in the green space around the Isfahan Oil Refinery. Soil water repellency was assessed using water drop penetration time (WDPT) in the polluted locations. Soil sample with least aggregates disturbance were collected and selected soil physical and chemical properties were measured. Soil structural stability was evaluated using the wet-sieving method and mechanically dispersible clay (MDC) structural stability indices of mean weight diameter (MWD) and geometric weight diameter (GMD) of aggregates and MDC were then calculated. Results showed that the positive effect of petroleum pollution on the MWD and GMD become significant. Negative impact of petroleum pollution on MDC was also significant. Increment of total petroleum hydrocarbons (TPHs) increased the soil water repellency. A positive correlation was observed between soil water repellency and GMD. However, TPHs concentrations greater than 6.4% decreased the MWD and GMD presumably due to anionic repulsion between clay particles and hydrocarbon functional groups. Although greater water repellency increased soil structural stability in the polluted locations when compared to control locations, however, diminished water retention of polluted soil has created an unfavorable condition for the green space in the area.


A. Masjedi, M. Sobhani,
Volume 19, Issue 74 (1-2016)
Abstract

Riprap is used to control scouring around the bridge abutment. In order to study the stability of riprap around two bridge abutments with two different shapes, experiments were conducted in a laboratory flume made of Plexiglass in 180 degree bend.  In this research, several experiments were done by placing the two bridge abutments made of Plexiglas in a series of riprap. Experiments included two different types of riprap with different densities, four different diameters and constant rate of discharge under pure water condition. In each experiment, flow depth was measured in terms of moving threshold, then stability was calculated by using the data obtained. The results showed that in the same conditions chamfered wing-wall is greater than vertical-wall. So, chamfered wing-wall is, on average, 9 percent more stable than the vertical wall. 


A. Hosseini, M. Shafai- Bajestan,
Volume 20, Issue 75 (5-2016)
Abstract

Assessing the root system and its tensile strength is necessary for determine the impact of roots in increasing the soil shear strength. The present study aims to investigate effects of slope and flow of riverbank on root system of riparian POPULOYS trees. In a relatively direct interval, 6 riparian POPULOYS trees were chosen on the slope of Simereh riverbank. To assess the root system, the circular profiles trenching method was utilized. The surface around each tree was divided into four quadrants: upper quadrant, lower quadrant, in slope direction and in flow direction. In every quadrant, number and diameter of roots were measured. The obtained results showed that the highest number of roots were in 90-100 cm depth. 59% of Roots, in the slop direction and 53% of roots in flow direction, were located in the top quadrant. Approximately, 97% of roots had up to 20 mm diameter. The greatest difference in the number of roots in upper, lower, in slop direction and in flow direction quadrants, were seen in diameters up to 5 mm. In slope direction, this difference was almost 2.7 times more than the difference seen in flow direction. The average ratio of root cross-section was 0.26%. The obtained results indicate that the root system of riparian POPULOYS trees on the riverbank is asymmetrical.


E. Jasemi Zargani, S. M. Kashefipour,
Volume 21, Issue 3 (11-2017)
Abstract

Spur dikes are the most common hydraulic structures for river bank protection. Since the construction of this structure causes higher velocities around it, this structure is exposed to erosion. Riprap around the structure nose is one of the most common and economic way to protect spur dike. The main aim of this study is to investigate the riprap stability in a mild 90 degrees bend. Experiments were conducted in a laboratory flume with a 90 degree bend. After specifying the critical spur dike along the bend, this spur and one before and one after it were protected by riprap. The variables were the length of the structure, spur space, riprap size, Froude number, and the amount of submergence, and 205 experiments were carried out in this flume. Finally an experimental equation was developed based on the flow and geometric parameters of submerged spur dike, which can be applied for designing the riprap size. 


M. Aghapour Sabbaghi,
Volume 22, Issue 4 (3-2019)
Abstract

With regard to the crisis of water resources in the country, overdraft of groundwater resources has caused undesirable situation for most of the plains. On the one hand it is necessary for the stability of the resources are constantly using these resources, future generations need to be considered. In this regard, in this study make a cropping pattern with aims to develop a sustainable supply of groundwater resources in the Baghmalek plain has been considered. In this study, time series variables technique are used for predicting future values of variables. Also, the dynamic programming model, is used to determine the cultural pattern. Information needed for this research in two ways questionnaire and the use of statistics resource of agri-jahad and Khuzestan province`s water and power organization in 2013, has been collected. The results show that water input is considering as a limited production factor in the agricultural sector of the region. In addition, using of above pattern, will make fundamental changes in the region`s cropping pattern. The use of modern irrigation methods can increase the agricultural production capacity to double size. The main proposed of study is choosing the patterns that consider intergenerational sustainability about scares inputs such as water.

S. Rahmati, A. R. Vaezi, H. Bayat,
Volume 23, Issue 1 (6-2019)
Abstract

Saturated hydraulic conductivity (Ks) is one of the most important soil physical characteristics that plays a major role in the soil hydrological behaviour. It is mainly affected by the soil structure characteristics. Aggregate size distribution is a measure of soil structure formation that can affect Ks. In this study, variations of Ks were investigated in various aggregate size distributions in an agricultural soil sample. Toward this aim, eight different aggregate size distributions with the same mean weight diameter (MWD= 4.9 mm) were provided using different percentages of aggregate fractions consisting of (< 2, 2-4, 4-8 and 8-11mm). The Ks values along with other physicochemical properties were determined in different aggregate size distributions. Based on the results, significant differences were found among the aggregate size distributions in Ks, particle size distribution, porosity, aggregate stability, electrical conductivity (EC), organic matter and calcium carbonate. The aggregate size distributions with a higher percentage of coarse aggregates (4-8 and 8-11 mm) also showed higher Ks as well as clay percentage. A positive correlation was also observed between Ks and clay, aggregate stability and EC, whereas sand showed a negative correlation with Ks. No significant correlations were found between Ks and silt, porosity and organic matter. Further, multiple linear regression analysis showed that clay and aggregate stability were the two soil properties controlling Ks in the aggregate size distributions (R2=0.80, p<0.01). Aggregate stability was recognized as the most important indicator for evaluating the Ks variations in various aggregate size distributions.

A. Karami, K. Khavazi,
Volume 23, Issue 2 (9-2019)
Abstract

Due to unsuitable soil physical conditions, calcareous soils, and the existence of a huge amount of sulfur in the country, the study of sulfur effects on the soil structure and other soil properties is necessary. Therefore, the effects of different rates of sulfur including: 0, 750, 1500 and 3000 kg/ha, when accompanied by Halothiobacillus neapolitanus bacteria, on the soil properties in the corn-wheat rotation in two years were investigated. Parameters of soil pH, EC, sulphate, organic carbon, soil structure and wheat yield were measured. For the quantification of soil structure and quantity evaluation of sulfur effect on the soil structure, with measuring the aggregate size distribution, the mean weight diameter (MWD) and geometric mean diameter (GMD) of the aggregate indices, and the amounts of fractal dimension were determined. The r results indicated that with the progress of the experiment and further application of sulfur along with thiobacillus bacteria, aggregation and aggregate stability were increased. The effect of sulfur treatments on MWD and GMD was significant; based on quantification indices, it had 28 percent positive effect on the soil structure. Sulfur with 3 percent reduction of fractal dimension had a significantly positive effect on the soil structure. Application of sulfur decreased a small amount of soil pH and increased 12 percent of the soil EC and 40 percent of the soil sulphate. So soil structure improvement and reclamation of soil physical condition can be very effective on the soil conservation and sustainability of the production resources and the conservation of environment.

M. Pakmanesh, H. Mousavi Jahromi, A. Khosrojerdi, H. Hassanpour Darvishi, Hossein Babazadeh,
Volume 25, Issue 3 (12-2021)
Abstract

The present study is investigated the earth dam stability during drawdown based on both numerical and experimental aspects. To validate the numerical model, a model was performed experimentally. Some soil mechanic tests were carried out through the hydraulic experiments to attain the usage factors of the numerical investigation. To investigate the effect of hydraulic conductivity on the rapid drop of water level and the use of hydraulic parameters of materials, seepage flow in the model was modeled by seep/w software. The input information to the software including hydraulic conductivity and water volume were measured by performing a constant load test and using a disc penetration meter, respectively. After validation of hydraulic conductivity with the experimental model, the results were compared with observed data. Comparison between numerical and laboratory discharge illustrated that the numerical model with laboratory model is well confirmed. In addition, saturated and unsaturated simulations demonstrated that the unsaturated model is highly consistent with the experimental model. It is assumed that due to the drawdown conditions, unsaturated models can achieve high accuracy for simulating the flow through a homogeneous earth dam.

A.r. Vaezi, E. Mohammadi,
Volume 25, Issue 4 (3-2022)
Abstract

This study was conducted to investigate the temporal variations of runoff and rill erosion in various soil textures under different slope gradients. So, a laboratory experiment was set up in three soil textures (loam, clay loam, and sandy clay loam) and four slope gradients (5, 10, 15, and 20%) using the completely randomized design with three replications. Runoff production and rill erosion were measured at a flume with 4 m×0.32 m in dimensions using a simulated water flow with 0.5 lit min-1 in discharge during 30 min. Results indicated that runoff and rill erosion and their interaction were significantly affected by soil texture and slope gradient (P < 0.001). Significant relations were found between rill erosion and runoff both in three soils and four slope gradients, and the strongest relations were in loam (R2= 0.86) and 15% slope gradient (R2= 0.94). Runoff and rill erosion varied considerably in the soil textures and slope gradients during the experiment. A 10-min pick time was found for runoff and rill erosion. In contrast to runoff, rill erosion appeared an irregular and gradual increasing pattern during the experiment which was associated with the frequency of transportable soil particles. Clay loam had more sensitive particles due to a higher percentage of fine particles and weaker structure, and most of them were washed in early times, and finally, rill erosion was reached to a constant pattern. This study revealed that temporal variation patterns of runoff and rill erosion are influenced by soil type (texture and structure) and slope gradient.

N. Moradian Paik, S. Jafari,
Volume 26, Issue 4 (3-2023)
Abstract

Changes in land quality factors were investigated according to the change in land use of two conventional cropping systems in Khuzestan (Dimcheh region, periodic cultivation system, sugarcane, forest, and deforesting in Zaras region). The results showed that by the change of forest land use, organic carbon from 0.93 to 0.55%, cation exchange capacity (CEC) from 19.6 to 13.3 cmol/kg, C/N from 7.4 to 3.8%, the mean weight diameter of aggregate (MWD) from 1.7 to 1.3%, and microbial respiration from 0.11 to 0.06 mg of CO2 /gr of soil per day decreased and in contrast, the dispersible clay from 4.6 to 19.3% increased. PCA analysis for the parameters showed that five factors justified more than 90% of the variance in the values of FC, PWP, AW, and AF. In the Dimcheh region, the average volumetric moisture content of FC from 31.3% to 27.3%, available water from 12.9% to 9.8%, dispersible clay from 56.1% to 12.3%, and bulk density reduced from 1.6 to 1.4%, organic carbon from 0.45 to 0.78%, C/N from 6.3 to 10.0%, microbial respiration from 0.01 to 0.04 mg of CO2 /gr soil per day and MWD of aggregates increased from 0.77 to 1.3 mm. Five factors including FC, AW, BD, DC, and OM explained more than 90% of the variance.

V. Moradinasab, S. Hojati, A. Landi, A. Faz Cano,
Volume 27, Issue 2 (9-2023)
Abstract

Parent material and topography are among the soil-forming factors that affect soil evolution by influencing different parameters. This study was conducted to compare the effect of marl and calcareous parent materials in different slope positions, including the summit, shoulder, foot-, and toe-slopes on soil clay mineralogy in the Karoon 3 Basin, east of Khuzestan Province. Four soil profiles in each of the two topo-sequences were dug. They were sampled based on their genetic horizons and some physical, chemical properties, and clay mineralogy were measured. The results showed that the type and abundance of clay minerals identified for both parent materials were more affected by topo-sequence position. The composition of minerals identified in the topo-sequence with marl parent materials included kaolinite, palygorskite, smectite, chlorite, mica, and quartz, and in the topo-sequence with calcareous parent materials, palygorskite, smectite, chlorite, mica minerals, and quartz, and most of the identified minerals were also observed in all positions in the C horizon. However, in marl parent materials kaolinite, and calcareous parent materials, smectite seems to have been formed pedogenically. The result of the association between Weaver and Beck indicated that most of the clay minerals are in the equilibrium of Palygorskite.

Z. Naderizadeh, H. Khademi, A. Shamsollah,
Volume 28, Issue 1 (5-2024)
Abstract

Although several reports are available on the distribution of Palygorskite in the soils of arid regions of Iran, there is not much information about the presence and abundance of this important fibrous clay mineral in the soils of Bushehr Province. This research was carried out: (1) to investigate the distribution of Palygorskite and other major associated clay minerals, and (2) to evaluate the relationship between the relative quantity of Palygorskite in clay-sized fraction and the most important soil properties in Dashtestan County, Bushehr Province. Five geomorphic surfaces including eroded rock outcrop, rock outcrop, dissected hill, alluvial fan, and alluvial plain were identified in the study area using Google Earth images and field observations. After sampling representative pedons, the clay mineralogy of two horizons from each pedon was determined. X-ray diffractograms and SEM images showed that in the studied soils, which were classified as either Aridisols or Entisols, Palygorskite was present in different quantities on all geomorphic surfaces. Moreover, Illite, Chlorite, Smectite, irregularly interstratified Chlorite/Illite, and Kaolinite were the other clay minerals that existed in the soils studied. The relative quantity of Palygorskite and Smectite was variable on different geomorphic surfaces. Regardless of the type of geomorphic surface, petrogypsic and gypsic horizons showed the highest quantity of Palygorskite as compared to other horizons which seems to be due to the suitable geochemical conditions of these horizons for the formation and stability of Palygorskite mineral. The higher correlation of Palygorskite content with gypsum, as compared to that with the carbonates, indicates the importance of gypsum in Palygorskite distribution in the soils of the study area. The findings also indicated that the amount of Palygorskite was positively correlated with soluble Mg/Ca ratio, pH, gypsum, and soluble Mg. These parameters appear to control the genesis and distribution of Palygorskite in the soils studied. In general, it is necessary to pay special attention to their clay mineralogy, especially the significant amount of Palygorskite to manage the soils of the study area and to reasonably predict their behavior.


Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb