Search published articles


Showing 53 results for Sadeghi

S. H. Sadeghi, A. Allbuali, R. Ghazavi,
Volume 20, Issue 76 (Summer 2016)
Abstract

Nowadays, the increasing population and water demand in various sectors of agriculture, industry, drinking and sanitation has brought about tremendous pressure on groundwater resources. Changes in groundwater quality and salinity of the water resources are currently major threats to development, especially in the dry and too dry lands. The aim of this study is evaluation of the trend of changes in groundwater quality, both temporally and spatially, in Kashan plain over a period of 12 years (2002-2013) using geostatistical methods and classification methods namely Shouler and Wilcox. Thereby, Export Choice has been used and each parameter has been weighted according to its effect on water quality changes. Then, the weighted average of water quality parameters was used for zoning the drinking and agriculture water. The results showed that among the geostatistical methods, circular Kriging based on the correlation coefficient has more acceptable performance. Moreover, the results of spatial and temporal changes in water quality based on Shouler and Wilcox indicate a decrease of drink and agriculture water quality in the study area. Besides, 1.75 km2 of high quality drinkable water was annually decreased between 2002 and 2013 and replaced with moderate or poor quality water. Also, the same but more remarkable decline happened in agriculture water so that 11.06 km2 of high quality agriculture water annually diminished from 2002 to 2009 and plunged zero by 2009.


M. M. Matinzadeh, J. Abedi Koupai, H. Nozari, A. Sadeghi Lari, M. Shayannejad,
Volume 20, Issue 76 (Summer 2016)
Abstract

In this research, a comprehensive simulation model for water cycle and the nitrogen dynamics modeling including all the important processes involved in nitrogen transformations such as fertilizer dissolution, nitrification, denitrification, ammonium volatilization, mineralization, immobilization as well as all the important nitrogen transportation processes including nitrogen uptake by the plant, soil particles adsorption, upward flux, surface runoff losses and drain losses, was used for fertilizer management modeling in a sugarcane farmland in Imam Khomeini Agro-Industrial Company using a system dynamics approach. For evaluating the model the data collected from Imam Agro-Industrial Company equipped with a tile drainage system with shallow ground water and located in Khuzestan province, Iran, were used. The statistical analysis of the observed and simulated data showed that the RMSE for determining the accuracy of simulation of the nitrate and ammonium concentration in drainage water is 1.73 mg/L and 0.48 mg/L, respectively. The results indicated that there is good agreement between the observed and the simulated data. Nine scenarios of fertilization at different levels of urea fertilizer were modeled including one scenario of 400 kg/ha, two spilit scenarios of 350 kg/ha, two spilit scenarios of 325 kg/ha, two spilit scenarios of 300 kg/ha, one scenario of 280 kg/ha and one scenario of 210 kg/ha. Results of the modeling showed that the scenario of 210 kg/ha has the highest nitrogen use efficiency (52.3%) and the lowest nitrogen losses consisted of denitrification, ammonium volatilization and drainage losses (17.82, 7.16 and 92.59 kg/ha, respectively). The results revealed that increasing the consumption of urea fertilizer greater than 210 kg/ha increased the overall nitrogen losses and reduced the nitrogen use efficiency. Meanwhile, this model can be used for managing the fertilizer and controlling the nitrate and ammonium concentrations in the drainage water to prevent the environmental pollution. Also, the system dynamics approach was found as an effective technique for simulating the complex water-soil-plant-drainage system.


M. Mir Mohammad Sadeghi, A. R. Sotoudehfar, E. Mokhtari,
Volume 20, Issue 77 (Fall 2016)
Abstract

Improvement of soils is among the major concerns in civil engineering, therefore a variety of approaches have been employed for different soil types. The annual budget of implementing the projects of this kind in countries clearly implies the importance of the subject. The loose granular soils and sediments have always imposed challenges due to their low strength and bearing capacity. Bio-mediated soil improvement has recently been introduced as a novel link of biotechnology (biotech) and civil engineering for improving the problematic soils, i.e. utilizing some bacteria to precipitate calcite on the soil particles. Bio-grouting is a branch of Bio-mediated soil improvement which is a method based on microbial calcium carbonate precipitation. In this regard, the soil samples were stabilized by injecting the bacterium Sporosarcina pasteurii in the first phase of the process and Urea and Calcium Chloride in the second phase of the process (two-phase injection) as the nutrients into the sandy soil columns and subjected to unconfined compressive strength test. In this research, Taguchi method was utilized for design of experience (DOE). Based on results obtained, the activity of the bacteria caused the precipitation of calcium carbonate in soil samples so that after 21 days, the unconfined compressive strength of the soil increased from 85 kPa in the control sample to 930 kPa at optimum condition.


Mh. Rasouli Sadaghiani, S. Sadeghi, M. Barin, E. Sepehr, B. Dovlati,
Volume 20, Issue 78 (Winter 2017)
Abstract

Potassium is the most abundant nutrition element in the surface soil but most of the potassium is unavailable to the plants. The present study was conducted with the aim of isolation of potassium solubilizing bacteria from rhizosphere soil and evaluation of quantitative ability of released potassium from different sources of silicate by strains. For this propose, laboratory and greenhouse evaluations were carried out on corn (Zea mays L. Cv. single cross 640 (as a factorial in a completely randomized design with three replications. Laboratory factors were potassium sources (four levels), incubation time (seven levels) and microbial inoculation (six strains) and greenhouse factors were potassium sources (five levels) and microbial inoculation (four strains). The results showed that among the bacterial strains KSB13 had maximum dissolution diameter (25 mm) and solubilisation index (SI=3). The highest potassium content (3/32 µg/mL) was released from biotite by strains of KSB10 after ten days incubation. The microbial inoculation increased root dry weight and plant height for 30 and 25 percent, respectively, compared to control treatments. Also the mean shoot dry weight and K content in microbial treatments of silicate minerals were respectively increased 3/75 and 1/57 times higher than control treatment. It can be concluded that microbial inoculation causes potassium release from silicate minerals and improved plant growth.


S. Ebrahimiyan, M. Nohtani, H. Sadeghimazidi,
Volume 21, Issue 2 (Summer 2017)
Abstract

The basis of spatial planning is the geomorphological zoning of ground surface, in which the first phase is determining the homogeneous zones of the ground surface in terms of geomorphological characteristics. The current study aimed at determining the proper zones for artificial feeding in Gahar mountainous region and Garebayegan plains in Fars province by the use of zoning the ground by Evans-Chezy quantitative coefficients. The quantitative zoning of ground surface plays a vital role in more accurate determination of the land capabilities due to precise determination and division of the types, facies, and surface terrains. For this study, the elevation numeral data with 10m resolution obtained from the National Cartographic Center was used. By the use of surface fitting tools in MATLAB software, the equation for each form was fitted to limited fragments of the surface and the program was applied. Then, each of the quantitative coefficients was illustrated as some zones. For determination of fitting degree, the total squared difference between the rate parameter was used and by the use of fitness degree, the propriety degree of the surface for optimal positioning of flood spreading with surface morphological view was determined. The results indicate that the surface downstream the alluvial fans and plains located on the southern region of the studied land is the most appropriate zone for the Flood Spreading. This area constitutes a surface of 10% of the total area of the region.


M. Sadeghian, H. Karami, S. F. Mousavi,
Volume 21, Issue 4 (Winter 2018)
Abstract

Nowadays, greater recognition of drought and introducing its monitoring systems, particularly for the short-term periods, and adding predictability to these systems, could lead to presentation of more effective strategies for the management of water resources allocation. In this research, it is tried to present appropriate models to predict drought in city of Semnan, Iran, using time series, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (MLP and RBF). For these modeling processes, average monthly meteorological parameters of rainfall, temperature, minimum temperature, maximum temperature, relative humidity, minimum relative humidity, maximum relative humidity and SPI drought index were used during the period 1966 to 2013. The results showed that among the many developed models, the ANFIS model, with input data of average rainfall, maximum temperature, SPI and its last-month value, 10 rules and Gaussian membership function, showed appropriate performance at each stage of training and testing. The values of RMSE, MAE and R at training stage were 0.777, 0.593 and 0.4, respectively, and at testing stage were 0.837, 0.644 and 0.362, respectively. Then, the input parameters of this model were predicted for the next 12 months using ARIMA model, and SPI values were predicted for the next 12 months. The ANN and time series methods with low difference in error values were ranked next, respectively. The input parameters SPI and temperature had better performance and rainfall parameter had weaker performance.

M. Mirmohammad Sadeghi, B. Ebrahimi, M. Pasandi,
Volume 22, Issue 2 (Summer 2018)
Abstract

Depletion and consequently reduction in groundwater storage results in numerous harmful environmental effects such as reduction in yields of wells, land subsidence, lowering of water quality and also reduction in storage of surface water bodies having hydraulic relation with aquifers. In this research, groundwater depletion in the Najafabad subcatchment aquifer located in the GavKhouni basin, Isfahan province was evaluated. These studies indicate groundwater depletion and deterioration of the aquifer water quality during the recent years. Zayandehroud River had been effluent and it has recently converted to influent and dominantly recharges the aquifer. The groundwater depletion in this region has been due to wells overpumping and it does not comply with the uniform rainfall variations in recent years. According to the shaly aquifer bedrock, the groundwater depletion cannot be due to leakage through the bedrock. Moreover, the groundwater quality has been deteriorated in all parts of the aquifer, especially in the regional drawdown cones resulted from recently groundwater overexploitation by deep wells. The river leakage to the aquifer is predicted to be persistent and increasing according to results of the research and it is necessary to limit the groundwater extraction and change the average surface water inflow to the area to mid 1370s condition.

E. Sadeghi, F. Raiesi, A. Hossienpur,
Volume 23, Issue 2 (Summer 2019)
Abstract

Abiotic stresses such as salinity and contamination individually have a negative effect on the soil enzyme activities, whereas addition of organic matter to soil can alleviate the negative impacts of stresses on the enzyme activity. However, the combined effects of these stresses (multiple stresses) on soil biochemical conditions and the role of organic matter addition in these interactions are largely unknown. The objective of this research was to explore the interaction effect of NaCl salinity and cadmium (Cd)-pollution on the activities of catalase, alkaline phosphatase, arylsulfatase and fluorescein diacetate hydrolysis in a Cd-contaminated calcareous soil treated with alfalfa residue over 3 months of incubation. A factorial experiment with 2 levels of Cd, 3 levels of salinity and 2 plant residue treatments was conducted using a completely randomized design with 4 replications. The results indicated that salinity increased the Cd availability in both uncontaminated and contaminated soils and reduced the soil enzymatic activity. Nevertheless, addition of alfalfa residue reduced the detrimental effects of salinity and Cd-pollution on the soil enzyme activities. This indicated that in saline Cd-contaminated soils with low organic matter, adding plant residues could lower the concentration of available Cd and the effect of soil salinity with a concomitant increase of enzyme activities. So, this study showed that the joint effect of NaCl salt and Cd on enzyme activity was mostly synergistic in plant residue-untreated soils, but it was antagonistic in the plant residue-treated soils.

N. Sadeghian, A. Vaezi,
Volume 23, Issue 2 (Summer 2019)
Abstract

Sediment selectivity during transport may provide basic information for evaluating on-site and off-site impacts of the soil erosion. Limited information is, however, available on the selectivity of sediments in rill erosion, particularly in the rainfed furrows. Toward this, the sediment selectivity was investigated in three soil textures (loam, loamy sand sand clay loam) under 10% slope using 90 mm.h-1 rainfall intensity for 40 min. Soil samples were passed from a 10 mm sieve and packed in to the erosion flume with 0.4m × 4 m in dimensions. Particles size distribution (PSD) was determined in the sediments (PSDs) and compared with the original soil PSD (PSDo). The proportion of PSDs and PSDo was stated as PSDs/PSDo to show the selectivity of soil particles by rill erosion. Based on the results, all three soils appeared as the coarse particles (coarse sand and very coarse sand) in sediments with the PSDs/PSDo>1, indicating the higher selectivity of these particles by rill erosion. Loamy sand was the most susceptible soil to rill erosion among the studied soils, which generated a higher runoff (0.0035 m2.s-1) and sediment load (0.1 kg.m-1.s-1) during rainfall. The PSDs of this soil were similar to those of the original soil PSD. This study revealed that the stability of aggregates could be regarded as the major soil factor controlling rill erosion rate and the sediment selectivity in the semi-arid soils. With an increase in the water-stable aggregates, soil infiltration rate and as a consequence, shear stress of flow could be decreased in the rills.

M. M. Matinzadeh, J. Abedi Koupai, A. Sadeghi-Lari, H. Nozari, M. Shayannejad,
Volume 23, Issue 3 (Fall 2019)
Abstract

Selection of drainage equation with acceptable accuracy has always been a challenge for designers to design subsurface drainage systems. In this research, seven steady state drainage equations were used for predicting daily and cumulative drainage rate on a farmland of sugarcane in Imam agro-industrial Company. These drainage equation included Hooghoudt, Ernst, Kirkham and Dagan that have been developed in the past and Mishra and Singh, Henine and Yousfi et al that recently developed. The statistical indices consist of P-value, RMSE, R2 and Percentage Error of estimating cumulative drainage rate were calculated for Hooghoudt equation 0.9501, 1.49 (mm/day), 0.80 and -0.19%, respectively. For Ernst equation 0.0001, 2.46 (mm/day), 0.34 and 16.98%, respectively. The result of performance of drainage equations revealed that Hooghoudt and Ernst equation were as the equations with the highest and lowest accuracy in predicting drainage rate, respectively. Also from the newly developed equations, the Yousfi et al equation was found with relatively well accuracy to predict the drainage rate. This equation was placed in second rank after Hooghoudt equation and other equations showed poor performance. Thus, with selection of the appropriate drainage rate, the Hooghoudt equation is suggested for designing of drain spacing in medium to heavy textured soils such as sugarcane agro-industrial.

N. Sadeghian, A. Vaezi, A. Majnooni Heris,
Volume 24, Issue 1 (Spring 2020)
Abstract

Few studies have been done regarding the role of the raindrop in the hydrodinamic mechanism of soil erosion. In this study, rainfall simulation experiments were conducted to evaluate the role of raindrop in runoff discharge, sediment concentration and hydraulic properties of flow under four slope gradients (5, 10, 15 and 20%) in a clay soil using a 90 mm.h-1 rainfall intensity to reach the steady state flow. Soil sample was packed into the erosion flume with 0.3m× 0.4m × 4 m in dimensions and tested under two soil surface conditions:  one with raindrop impact and one without raindrop impact. The results showed that runoff discharge, sediment concentration, flow depth, shear stress, stream power, Reynolds number and runoff velocity under without raindrop impact condition were significantly lower than those in the condition  with the raindrop impact with a factor of 0.62 to 3.54, 0.08 to 11.83, 0.91 to 0.96, 0.26 to 3.25, 0.52 to 4.45, and 0.36 to 3.27, 0.23 to 0.79 times, respectively; on the other hand, the Darcy Wysbach, Chezy and Manning coefficients were increased significantly under without raindrop impact (P<0.01). Flow velocity was the key hydraulic parameter strongly affecting the hydraulic properties. These findings indicated the importance of raindrop impact in the detachment rate of soil particles through the change of the hydraulic characteristics. This study also revealed the key role of raindrop impact on the runoff hydraulic characteristics, as well as particle detachments rate in rills. Information about the role of raindrop impact is a substantial step in modeling the rill erosion. Therefore, elimination of raindrops impact, especially in the steep slopes, with the conservation of natural vegetation cover can sufficiently prevent runoff production as well as the particle detachment rate.

A. R. Vaezi, Kh. Sahandi, N. Sadeghian,
Volume 24, Issue 2 (Summer 2020)
Abstract

In semi-arid regions, soils are weakly aggregated and subjected to water erosion processes especially rill and interrill erosion. There is no information on the rate of these water erosion types in semi-arid soils located in the hillslopes. Therefore, this study was conducted to determine the soils susceptibility to these erosion types in semi-arid region. A laboratory experiment was done in eight soil textures using in a 0.6 m × 1 m flume a simulated rainfall with 50 mm.h-1 in intensity for 60 min. Rill and interrill erosion rate was measured using soil loss amount per flume area and rainfall duration. Based on the results, both rill and interrill erosion rate were significantly varied among the soils textures (P<0.001). Silt loam was the most susceptible soil to rill erosion (0.22 g m-2 sec-1) and interrill erosion (0.15 g m-2 sec-1), whereas sand didn’t appear any soil loss by these water erosion types. The compression of soil loss resulted by rill and interrill erosion among the soil tectures showed that rill erosion rate for sandy clay loam, silt loam, loam and sandy loam was 3.2, 1.4, 1.1 and 2.8 times higher than interrill erosion rate, respectively. These differences were statistically significant. Silt content was the major factor controlling soil loss difference in these soils. This study revealed that the study semi-arid soils having higher silt content appears also higher rill erosion rate than interrill erosion rate.

M.m. Matinzadeh, J. Abedi Koupai, M. Shayannejad, A. Sadeghi-Lari , H. Nozari,
Volume 25, Issue 4 (Winiter 2022)
Abstract

Using water and fertilizer management at the farm level can be increased water use efficiency and reduce the volume of drainage water, fertilizer losses, and other pollutants in farmland with deep underground drains such as Khuzestan agro-industrial Companies. In the present study, a comprehensive simulation model for the water cycle and the nitrogen dynamics modeling was used for water and fertilizer management modeling on farmland of sugarcane in Imam Agro-Industrial Company using a system dynamics approach. To reduce irrigation water consumption and nitrogen fertilizer losses, five different scenarios were considered including four scenarios of water management consist of 5, 10, 15, and 20 percent reduction in the amount of irrigation water (I1, I2, I3, and I4) compared to the current situation of irrigation in Imam agro-industrial Company (I0), and one scenario of integrated water and fertilizer management (20% reduction in the amount of irrigation water and urea fertilizer 210 Kg/ha, I4F). The results of modeling showed that the scenario of I4F caused to reduce 31, 70, 71, 70, and 85 percent of the cumulative volume of drainage water, cumulative nitrate and ammonium losses, total losses of cumulative nitrate, and ammonium by tile-drain and cumulative losses of denitrification process, respectively. Thus, the implementation of this scenario, not only saves water and fertilizer consumption but also reduces environmental pollution effectively. So the scenario of I4F (amount of irrigation water for six months 2656 mm and urea fertilizer 210 Kg/ha) is recommended for sugarcane in the Imam agro-industrial Company.

R. Sadeghi Talarposhti, R K. Ebrahimi, A. Horfar,
Volume 25, Issue 4 (Winiter 2022)
Abstract

Protection of rivers’ water quality as the most accessible source of the water supply has always been considered. In this paper, self-purification and the pollution decay coefficient values of Talar River, IRAN were studied based on field measurement of DO, BOD, pH, EC, Nitrate, Phosphate, and Temperature, in four seasons of the year 2018, in tandem with the river simulation and its calibration using QUAL2Kw model and the Streeter-Phelps method. In addition to the modeling and analysis results, the measured laboratory data values of the river water samples are also presented. Based on the results, the DO variations were ranged from 5.15 in summer to 7.47 mg/l in spring and BOD variations ranged from 1.88 in fall to 7.9 mg/l in summer. Also, according to the Streeter-Phelps method the decay coefficient values varied from 1.57 (1/day) in spring to 9.63 (1/day) in fall. The values of the Talar River decay coefficient also varied from 2 in fall to 7.7 (1/day) in summer involving the QUAL2Kw model.

A.r Modares Nia, M. Mirmohamad Sadeghi, A. Jalalian,
Volume 25, Issue 4 (Winiter 2022)
Abstract

Desertification has become one of the main problems of human societies living in the vicinity of desert areas in recent years. One of the methods that have been considered in recent years and are rapidly expanding in the field of soil mechanics is the Microbial Induced Carbonate Precipitation (MICP). In this method, urea-positive organisms that are naturally present in the soil can stabilize the soil and improve its engineering parameters by using urea and calcium chloride. Recently, attempts have been made to use this method to create a crustal layer on the soil to prevent wind erosion. In the present study, the effect of environmental conditions in deserts such as temperature and sand bombardment on microbial soil treatment has been investigated using this new method. The soil of the Segzi region as one of the main centers of dust in the Isfahan region was studied in this research. Therefore, the improved samples are subjected to regional temperatures which increased the surface layer resistance with increasing temperature. Also, the sandstorm conditions of the region were simulated using three different grain sizes of sand inside the wind tunnel. The results of these experiments showed that stabilized soil could withstand the conditions at wind speeds of 7 and 11 m/s. However, by increasing the wind speed to 14 m/s and the grain size, the crustal layer destroys and increases the wind erosion of the soil. Also, the resistance of the surface layer increased by increasing temperature in the tested samples. This increase in resistance continued up to 24 degrees with a high slope, but from 24 degrees onwards, this slope decreases. Based on the results of this research, it can be said that the microbial improvement method can be used as an alternative method in the future to stabilize desert soils.

S. Ebrahimiyan, M. Nohtani, H. Sadeghi Mazidi, E. Soheili,
Volume 26, Issue 1 (Spring 2022)
Abstract

The basis of land management is the geomorphological zoning of the land surface, which is determined based on the same geomorphological characteristics of the zoning. Ground zoning detect land features by basic surface features such as height, slope, and slope direction. In this study, quantitative zoning of the land surface with small coefficients to the surface has been used to identify suitable areas for artificial feeding in the mountainous region of Gohar and Dasht-e Gorbayegan in Fars province. Quantitative zoning of the land surface has been performed by Evans-Shri coefficients due to the accurate determination and separation of types, faces, and surface features of the land has an important role in determining the exact land use. In this research basic models included linear, circular, and divergent models. These basic models with the dimensions of the final windows are ranked second in the MATLAB software to the level the ground is fitted to determine the fit of these models, the parameter of total squared difference has been used. In addition, the suitability of the study area for flood distribution in five different classes was determined using fuzzy logic. The most suitable areas for feeding downstream of the cones had five parameters with a maximum score of 20. The inappropriate class related to the lower plains of alluvial fans have a minimum score of five input classes in fuzzy logic, which is equal to zero.

M.h. Sadeghi Ravesh,
Volume 26, Issue 2 (ُSummer 2022)
Abstract

The optimal strategy selection is an influential factor to enhance the efficiency of land reclamation projects. On the other hand, the process of desertification of the land during environmental degradation is the consequence of the interaction between various factors that make it challenging to select appropriate solutions. Therefore, this study aimed to provide systematic optimization strategies in the form of a group decision-making model in the Yazd-Khezrabad plain. The important strategies were identified using the Delphi model. Then, the alternative initial ranking was formed by Cook and Seiford method framework using the vote taken from the decision makers on strategies. Finally, by estimating the linear distance of each option and including the matrix of the intervals, the last priority of the strategies was obtained from solving the assignment problem. The results indicated that the strategies of "prevent land use inappropriate change" (A18) and "the regeneration of vegetation cover" (A23) with Value=1 and Reduced Cost=0, were identified as the most important combating-desertification strategies in the region, respectively. The results of this study help desert managers to utilize limited facilities and capital dedicated to controlling the desertification process efficiently and effectively.

M. Sadeghi, T.o. Naeeni, F. Kilanehei, M. Galoie,
Volume 26, Issue 3 (Fall 2022)
Abstract

One of the most important hydraulic structures in a dam is the spillway. The design of the ogee spillway crest is based on the lower profile of the free-flow jet passing through the sharp-crested weir. When the downstream ogee spillway profile for the design discharge conforms to the lower profile of the free-jet passing through the sharp-crested weir, the pressure on that surface of the spillway becomes zero. In this study, the design of the ogee spillway was performed initially based on both two- and three-dimensional numerical modeling and then compared to the USBR standard method. The comparison of the final numerical and analytical results showed that although the vertical two-dimensional outputs were completely in agreement with the USBR standard profile, the three-dimensional profiles were different because in this model, guide walls were not considered. According to the analysis, if the flow entering the spillway is parallel to its axis, the lower profile of the sharp-edge spillway will be in complete agreement with the standard profile. Since, the design of guide wall geometry for ogee spillways is carried out using physical modeling which iteratively revises during a high-cost trial and error procedure, this research based on the case study of the spillway of Karun-3 dam has been tried using numerical modeling. The closest geometry to the geometry of the overflow guide wall was obtained which creates the least difference in transverse velocities. In this way, the design of guide walls can be done with more accuracy and low cost in comparison to physical modeling.

A.r. Eftekhari, M. Mirmohammad Sadeghi, A. Jalalian,
Volume 27, Issue 2 (Summer 2023)
Abstract

The use of biotechnology-based methods in the field of geotechnical engineering has led to the birth of new knowledge of biogeotechnology and several studies have been conducted using this new knowledge in various geotechnical issues including reducing permeability and increasing shear strength, especially in sandy soils and the desired results have been obtained. Nevertheless, little research has been done using biogeotechnology in the field of improving the mechanical properties of clay soils, especially in reducing the swelling of expansive soils, which is considered one of the types of problematic soils. The main cause of swelling of expansive soils is the presence of montmorillonite clays in these types of soils. Using chemical additives to stabilize expansive soils such as lime and cement is a common practice. However, environmental concerns related to greenhouse gas production caused by the production of chemical substances and the destructive effects of these substances on the environment and soils have encouraged researchers to use other sustainable stabilization alternatives. Microbial Induced Carbonate Precipitation (MICP) is a technique that can be a promising solution to solve this problem. The objective of the present study was to investigate the effect of the MICP method on the swelling of expansive clay soils and its effect on the mechanical strength of this type of soil. One-dimensional swelling tests, uniaxial compressive strength tests, and Atterberg limits tests were performed on clay soil with a liquid limit of 53 using Sporosarcina pasteurii bacteria, calcium chloride, and urea as nutrients. Taguchi's method was used for the design of the experiments and the statistical analysis of the results. This method designs experiments through partial factorial and reduces their number without a significant effect on the results. Bacterial concentration, nutrient molarity ratio, treatment time, and soil moisture were selected as four factors with Four levels of variation. The results showed that the (MICP) method was effective in reducing the swelling potential of expansive soils and also caused a significant increase in the unconfined compressive strength of the soil and its undrained shear strength.

A. Shahnazari, S. Sadeghi,
Volume 27, Issue 2 (Summer 2023)
Abstract

In the present paper, crop pattern criteria have been evaluated relying on sustainable development to increase agricultural water productivity. Seven criteria were selected as the main environmental and economic criteria and were prioritized and reviewed for important and strategic products in the Tajan catchment of Mazandaran province. Criteria prioritization was done using optimization through a genetic algorithm with an objective function based on sustainable development. Then, physical and economic productivity indices were calculated to determine the productivity value. Based on the results, in the selection of the crop pattern, firstly, the category of economic criteria and finally the category of environmental criteria have been given attention to the farmers in the current situation. But in the genetic optimization algorithm, all priorities have a similar order from the environmental point of view and then from the economic point of view although each product has its order of criteria. By this prioritization, the parameters of the cultivated area, the volume of water consumed, and the amount of chemical fertilizers have decreased on average by 26%, 34%, and 21%, respectively, and the parameters of product performance and profitability have increased by 43% and 61%, respectively. In addition to providing environmental standards and increasing sustainable development, this prioritization causes an average increase in physical productivity by 84% and an increase in economic productivity by 72%.


Page 2 from 3     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb