Search published articles


Showing 22 results for Jamali

S. Jamali, H. Ansari, M. Zeynodin,
Volume 25, Issue 1 (Spring 2021)
Abstract

The goal of this study was to investigate the effects of treated urban wastewater and different harvesting times on the yield and yield components of Sorghum (cv. Speed feed) in the greenhouse condition. The research was done based on a completely randomized design including 3 replications as pot planting in Ferdowsi university of Mashhad in 2016. In this study, the effects of four mixtures consisting of the moderations use of the treated urban wastewater and freshwater (0, 25, 75 and 100 percent mixture of treated urban wastewater and freshwater) and three harvesting times level (pre-flowering, after 50 percent of the plant to flowering, and grain filling stage) on the yield and yield components of Sorghum were evaluated. The results inducted that the effect of different moderations of irrigation regimes on all of them parameter was highly significant (P<0.01), but plant height was non-significant; it was also revealed that the effect of harvesting times on all of the parameters was highly significant (P<0.01), but leaf width was non-significant. The results also exhibited that the interaction effects of irrigated regimes and harvesting times on the leaf number, panicle length and width, leaf, panicle, and stem was highly significant (P<0.01), but plant height, stem diameter, branches number, and leaf length and width were significant at the  5 percent level (P<0.05). Also, the use of 25, 75, and 100 percent mixture of wastewater resulted in the  forage yield of  37.5, -29.3, and 12.9 percent (pre-flowering); -31, -15.3, and -47.4 percent (after 50 percent of the plant to flowering),  and -11.8, -35.7 and -28.4 percent (grain filling stage), respectively. The highest forage weights (46.2 g per plant) showed, in the study, irrigated by a mixture of 75 treated wastewater and 25 freshwater, and harvesting the plant after 50 percent in flowering stage; on the other hand, the best treatment in this study irrigation by the mixture of 75 treated wastewater and 25 freshwater and harvesting the plant after 50 percent in the flowering stage, Thus, using the treatment in farm experiment required the field research.

S. Jamali, H. Banejad, A. Safarizadehsani, B. Hadi,
Volume 26, Issue 1 (Spring 2022)
Abstract

This research was conducted to study the effect of deficit irrigation and saline water on yield and yield components of Peppermint in the experimental research greenhouse of Ferdowsi University of Mashhad from 2018 to 2019. This research was performed as a factorial experiment based on the randomized complete design with three replications. In this research, irrigation levels consist of 4 levels (100 (I1), 80 (I2), 70 (I3), and 55 (I4) percent of FC) and saline water factors consist of 4 levels (0.9 (EC1), 1.9 (EC2), 2.5 (EC3), and 3.4 dSm-1 (EC4)). The result showed that a decrease of the water to 15, 30, and 45 percent have resulted in the reduction of shoot fresh weights (to 15.8, 28.4, and 30.1 percent), shoot dry weights (to 7.1, 11.5, and 11.5 percent), and root dry weights (to 4.6, 9.2, and 9.2 percent), respectively. Also, results showed that irrigation with EC2, EC3, and EC4 has resulted in a decrease in shoot fresh weights (to 12.7, 28.5, and 34.0 percent), shoot dry weights (to 3.6, 11.6, and 11.6 percent), and root dry weights (to 6.7, 12.4, and 14.6 percent), respectively. The result indicated that interaction effects of salinity and water stress decreased peppermint water productivity, as the highest and lowest peppermint water productivity with 3.54 and 2.06 Kgm-3 were in the EC1I4 and EC3I1 treatments, respectively. Results revoluted that maximum dry yield and peppermint water productivity were in the EC1I4, so this treatment was recommended for irrigation of peppermint.


Page 2 from 2     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb