Search published articles


Showing 50 results for Jalali

S.a.h. Abolghasemi, A.r. Jafari-Sayadi, S.m.a. Jalali-Hajiabadi, Z. Ansari-Pirsaraei,
Volume 10, Issue 4 (winter 2007)
Abstract

To study the effects of terbutaline (a beta adrenergic agonist) on performance of broiler chickens, 21 d-old male and female Cobb broiler chicks (n=300) were randomly assigned to one of five dietary treatments containing 0 (control), 5, 10, 15 and 20 mg terbutaline per kg diet. The feed conversion ratio (FCR), feed intake and body weight gain were measuered after 3 weeks. At 42-d age, six males and six females were randomly selected from each treatment and their live weight and weights of carcass, breast, breast muscle, drumsticks, drumstick muscle and abdominal fat were determined. Terbutaline didn’t affect daily weight gain, but FCR of male chicks was reduced for 5 and 10 mg/kg terbutaline treatments comapared with the control group (p<0.05). Carcass weight and weight of drumsticks, drumstick muscle, breast, breast muscle and ratio of breast to live weight of female chicks reciving 5 mg/kg terbutaline were higher than for other treatments (p<0.05). In male chicks, the live weight and weight of carcass, ratio of carcass to live weight, drumsticks and drumstick muscle at 5 mg/kg terbutaline treatment were higher than for other treatments (p<0.05). This experiment also showed that the addition of 5 mg terbotaline per kg diet during growing period improved FCR and ratio of carcass to live weight of male chicks, increased the ratio of breast to live weight of female chicks, and increased the carcass weight of male and female Cobb chicks.
M. Yousefifard, A. Jalalian, H. Khademi,
Volume 11, Issue 40 (summer 2007)
Abstract

Improper use of natural resources, especially soil, causes its degradation and severe soil erosion. Water erosion is an important factor causing soil degradation. Land use change of pasture would result in severe soil erosion mainly due to the reduction of vegetation cover and also surface soil disturbance. The objectives of this study were to estimate the amount of sediment, runoff and nutrient loss in four different land uses including a pasture with good vegetation cover (> 20%), a pasture with poor vegetation cover (< 10%), a currently being used dryland farm and a degraded dryland farm which is not used. Soil samples were taken from the depth of 0–10 cm in a completely randomized design with four replications. A rainfall simulator was run for two hours to estimate the amount of sediment, runoff and nutrient loss. Organic matter, total N, available P and distribution of particles size in soil and sediment were measured. The results showed that a very high degradation has occurred in the area mostly due to water erosion created as a result of overgrazing in pasture, susceptibility of geological formations and more importantly, the change of land use pasture to inefficient dryland farming. Maximum and minimum runoff was observed in the abandoned dry landfarm and pasture with good vegetation cover, respectively. Maximum sediment content was observed in dryland farm. Sediment content in dryland farm, abandoned dry landfarm and pasture with poor vegetation cover were 54.5, 21 and 10.4 times more than that in the pasture with good vegetation cover, respectively. Enrichment ratio (ER) of soil particles in sediment was highest for fine silt (2-5µm), followed by clay. A minimum of ER was obtained for sand fraction. Percentages of organic matter, total N and available P in sediment were higher in the first hour as compared to the second one. This is mainly due to the fact that fine particles are removed at the beginnings of the rainfall event. Total removal of these chemical factors was highest in dryland, intermediate in pasture with poor vegetation cover and abandoned dryland and lowest in pasture with good vegetation cover. In general, cultivation and disturbance of the pasture in the area land have caused a great decrease in soil quality and made the surface very sensitive to erosion.
H. Yosef-Zadeh, K. Spahbodi, M. Tabari, Gh. Jalali,
Volume 11, Issue 40 (summer 2007)
Abstract

In this investigation, the effect of seed source on the germination and survival of Acer velutinum Boiss. was assessed. Seeds were collected from 11 seed sources ( located at 20 to 2200 meter a.s.l in Mazandaran forests) and planted in a mountain nursery (Orimelk located at 1550 meter a.s.l) as completely randomized block design with three replications. The results show that the effect of seed source on germination and survival was statistically significant (p<0.01). Germination and survival rates were lower for the Pasands, Ashak and Deis sources, and the maximum seed germination was related to Lamzer site. Effect of seed sources on survival of seedling was significant too. The maximum and minimum survival was related to Lajim and Ashak, respectively. Regarding plan table seedling, the effect of seed source was significant. The maximum efficiency of seedlings has been found in Lajim, Lamzer, Parke Noor and Sangdeh sites, while the minimum range of efficiency was related to Ashak and Pasand2.
E. Feyzian, M. Jalali Javaran, H. Dehghani, H. Zamyad,
Volume 11, Issue 41 (fall 2007)
Abstract

Germplasm collection is the base of plant breeding. Iran is one of the most important centers of genetic diversity due to different climates and the old civilization.In this study we decided to collect melon accessions. The north and center of Iran were selected for this purpose. Fifteen qualitative and six quantitative traits were measured on thirty eight accessions. The cluster analysis by the use of UPGMA method and Jaccard coefficient helped separate the horticultural groups of Cucumis melo L. (Cantaloupensis, Inodorus, Flexousous, Reticulatus). The relationship between 30 of these accessions was assessed using 10 RAPD primers. The polymorphism was determined to be19%. The cluster analysis could not separate the horticultural groups of Cucumis melo L., showing that these groups are closely related. However, VB84 primer separated the tow Snakemelon.
R. Sepehri, Gh. Tahmasebi, M. J. Jalali Zonoz,
Volume 11, Issue 41 (fall 2007)
Abstract

During the honeybee breeding project in central Iran, sex alleles homozygoty and sex alleles number in the third generation of 364 colonies were studied in 2003. Sex alleles homozygoty was measured based on Ruttner (1988) and Tarpy and Page (2002) methods. The total area of worker brood area, stored pollen, and drone brood area were measured on the combs. The whole extracted honey weight and remaining honey in the combs were evaluated as honey production of colonies. Adult population was evaluated based on the number of full combs of adult honeybees. The results showed that sex alleles, average homozygoty and number in the colonies were 18.83% and 5.32 respectively. The results showed no significant correlation between homozygoty of sex alleles or sex alleles number and stored pollen ( P > 0.05 ) , but significant negative correlation between sex alleles homozygoty and colony population, total brood area and honey yield ( P < 0.01 ) was observed. So introduction of new sire colonies in the mating Isolated area is essential to prevent sex alleles homozygoty and also performance of honeybee colonies from decreasing.
F. Kiani, A. Jalalian, A. Pashaee, H. Khademi,
Volume 11, Issue 41 (fall 2007)
Abstract

To investigate the degree of forest degradation and the effect of land use change on selected soil quality attributes in loess-derived landforms, samples were taken from different land uses including forest, rangeland, degradated rangeland and farmland in Pasang watershed located in the Galikesh area of Golestan province (37°16'N, 55°30'E). The annual average temperature and mean precipitation of study area were 15°C and 730 mm respectively. Organic matter, pH, EC, CaCO3 and nutrients (N, P, K) as chemical indicators, hydraulic conductivity, bulk density and porosity as physical indicators and soil respiration as biological indicator were measured. The results showed that the amount of organic matter decreased three percent when it was turned from forest to farmland, and increased two percent from farmland to rangeland. The amount of CaCO3 in surface layer of deforested area was more than in the forest soils. The amount of soil N in forest and soil P and K in rangeland were higher than in other land uses. Bulk density and porosity in forest and MWD in rangeland were higher than in other land uses because of the decrease in organic matter due to farming activities. Soil respiration in forest was highest as compared to in other land uses. Difference of enzymes activities (L-asparaginase and Dehydrogenase) compared to microbial respiration indicates that enzymes activity is related to specific biological processes while soil microbial respiration basically depends on the general activity of soil microbial population. It could be concluded that amount of organic matter, soil N, bulk density, porosity, MWD, soil respiration and enzymes activities are suitable indicators for soil quality evaluation in this area.
A. Jalalian, M. Amirpour Robat, B. Ghorbani, S.h. Ayoubi,
Volume 11, Issue 42 (winter 2008)
Abstract

  Soil erosion is one of the most threatening issues for crop production and environmental qualities, especially for soil and water resources. Appropriate knowledge about total soil loss and runoff is valuable in order to perform soil and water conservation practices in watersheds. EUROSEM, "a single event, dynamic and distributed model," was developed to simulate soil loss, sediment transportation and deposition by rill and interrill processes. This study was conducted to evaluate EUROSEM model in order to simulate soil loss and runoff in Sulijan sub-basin, which covered 20 ha, from Charmah-Bakhtari province. The sub-basin was divided in to 19 homogeneous elements using topographic, land use, plant cover, slope and channel properties throughout it. Soil, plant cover, land surface and climate characteristics were measured and evaluated by field observations and laboratory measurements. Actual soil loss and runoff for studied events were determined by direct measurement in the field. After sensitivity analysis, calibration and validation steps were carried out to simulate runoff and soil loss. The results of sensitivity analysis showed that the EUROSEM model for predicting runoff was more sensitive to hydraulic conductivity, capillary drive and initial soil moisture. On the other hand the model for predicting soil loss was more sensitive to Manning's coefficient and soil cohesion. The results showed that the EUROSEM model was able to simulate well the total runoff, peak of runoff discharge, total soil loss and time for the peak of soil loss discharge. But that could not simulate well the peak of soil loss discharge and time for the peak of runoff. Although it seems that EUROSEM is able to predict soil loss and runoff partially well in individual events, it is necessary to evaluate the efficiency of the models for different basins with varieties of soil, plant cover and climatic properties.


A. Jalalian, M. Rostaminia, S.h. Ayoubi, A.m. Amini,
Volume 11, Issue 42 (winter 2008)
Abstract

  Extension of cultivation areas becomes gradually impossible due to ever-increasing population growth and urban area development in Iran. Therefore, it is very important to use the existing cultivated lands more efficiently. Land suitability evaluation makes the sustainable use of the lands feasible. The objective of this study was qualitative, quantitative and economic suitability evaluation of irrigated croplands for wheat, maize and sesame in Mehran plain, Ilam Province. Soil survey in the field, laboratory analysis of the soil samples, qualitative, quantitative and economic evaluation were different successive stages of this research. In qualitative evaluation, climatic, topographic and soil suitability classes were determined according to the degree of the matching with plant requirements, by parametric (square root) method. Quantitative and economic evaluations were done based on observed, potential and marginal yield analysis. Results of the qualitative land evaluation showed that most of the land units were classified moderately suitable for given crops because of soil limitations. Qualitatively, most of the land units were classified in the same classes as, or in lower classes than quantitative suitability classes for wheat and maize production, due to high management level at the farms. Whereas quantitative classes of sesame were determined lower than qualitative classes induced by low management level for this crop. Economic land suitability classification showed that the wheat production was the most economic land utilization type. Results of the economic assessment suggested that the cultivation of wheat in rotation with sesame would produce the most income for different units and could be increased in future using improvement in management level in the study area for sesame cultivation.


N. R. Jalali, M. Homaee, S. Kh. Mirnia,
Volume 12, Issue 44 (summer 2008)
Abstract

Canola (Brassica napus L.) in response to salinity represents various resistances with respect to its phonologic stages. Most plants such as Canola are resistant at germination stage. However, at seedling or earlier growth stages, plants become more sensitive to salinity but their tolerance increases with age. Salt tolerance of various plants has been extensively studied however, the results have either been qualitative or expressed as average values over root zone salinity for the whole growth season. Thus, developing appropriate models for quantitative characterization of plant response to salinity at different growth stages is essential. Canola which is considered as high economic value plant was selected for this study. Two productive stages for canola are recognized as flowering and ripening. To determine the effect of salinity on canola at vegetative growth stages, a greenhouse experiment was conducted on a natural saline loamy sand soil, using salinity treatment including one non-saline water (tap water) and 8 saline waters of 3 to 17 dS.m-1. The canola plants were irrigated with tap water before the desired stage and then salinity treatments were imposed. The Maas and Hoffman (1977), van Genuchten and Hoffman (1984), Dirksen et al., (1993), and Homaee et al., (2002b) models were used to predict relative transpiration (Ta/Tp ) and relative yield ( Y/Ym) as a function of soil salinity. The maximum error (ME), root mean square error (RMSE), coefficient of determination (CD), modeling efficiency (EF) and coefficient of residual mass (CRM) statistics were calculated to compare the models and their efficiencies. The results indicated that the van Genuchten and Hoffman (1984) model provides best prediction at flowering stage. However the Homaee et al. (2002b) model offers better prediction at ripening growth stage.
N. Toomanian, H. Khademi , A. Jalalian,
Volume 12, Issue 44 (summer 2008)
Abstract

Determination of landscape evolution is useful to well understand the physical environment and it also enables us to conduct the soil related studies. The objective of this study was to establish the historic evolution of Zayandeh-rud Valley from late Tertiary to Quaternary. To achieve this objective, the spatial structure of a representative area of Zayandeh-rud Valley in three dimensions was examined. Responsible geologic and geomorphic processes of landscape formation were determined and inherited records and evidences of changes in soil development were investigated. The inherited foot marks and different analyses proved that following the Zayandeh-rud River formation, from Miocene to present time, the following processes and events have occurred during valley formation pathway: 1- formation of old gypsiferous gravelly alluviums, 2- lagoon formation, the change in the river pathway, 3- playa formation, 4- river terrace deposition and 5- starting of wind erosion.
A. Karimi, H. Khademi, A. Jalalian,
Volume 12, Issue 44 (summer 2008)
Abstract

Despite the existence of highly silty soils in southern Mashhad, there is no information about the aeolian and /or in situ formation of these soils. The main objective of this study was to determine the source of silt generation in this area. Granitic hilly lands in southern Mashhad have been covered by silty deposits. Based on the soil origin, four profiles including a residual soil covered by a silty layer, a residual soil with low amount of silt, a highly silty soil and an alluvial soil as well as a deep profile containing a succession of silty and alluvial materials were studied. Cumulative particle size distribution curve (CPSDC), depth distribution curves of silt/sand ratio (Si/S), Folk inclusive graphic standard deviation, Folk inclusive graphic skewness (SKI) and sand grain morphology analyzed by scanning electron microscopy (SEM) were determined and used to identify the source of the silty materials. Based on the results obtained, silty (L), residual-silty (R-L), residual (R), alluvial (A) and alluvial-silty (A-L) horizons were identified. CPSDC of L horizons is sigmoidal in shape and is easily distinguishable from that of the other horizons. In contrast, the CPSDC of alluvial and residual horizons is spherical in shape. CPSDCs for R-L and A-L horizons are neither sigmoidal nor spherical, but something in between. The L horizons have the highest SKI (very skewed to fine particles) and the lowest Folk inclusive graphic standard deviation (very badly sorted). In this regard, alluvial and residual horizons are intermediate. Because of the silt addition to R-L and A-L horizons, these horizons have a nearly zero SKI (symmetrical) and the highest Folk inclusive graphic standard deviation (very badly sorted). Particle size distribution histograms of R-L and A-L horizons are bimodal, a mode for sand and a mode for silt, suggesting two different sources. Depth distribution of Si/S, SKI and Folk inclusive graphic standard deviation of highly silty and other horizonz show a drastic change between L horizons and the other horizons-an indication of lithologic discontinuity and difference in origin. In conclusion, despite the possible contribution of granitic parent rocks to silt generation in the area, loess deposits recognized appear to have mostly been transported by aeolian movement.
H. Yosef-Zadeh, M. Tabari, K. Spahbodi, Gh. Jalali,
Volume 12, Issue 44 (summer 2008)
Abstract

In order to predict Caucasian maple (Acer velutinum Boiss. ) seedling growth based on nursery Orimel, Eighty six one year old seedlings located at 1550 meters above sea level in Sari, north of Iran were randomly selected. Collar diameter, height, leaf area, photosynthesis area and leaf area/leaf weight ratio were determined. Then multivariate regression models between leaf characteristics and growth characteristic were drawn. The results indicated that number of leaves and photosynthesis area can estimate the height growth of a seedling. Also, mentioned characteristics of leaf can estimate the biomass of stem as a well as growth characteristics. According to the correlation between growth characteristics and leaf characteristics, it would be concluded that the photosynthesis area of leaf can be suitable for early selection of seedling for reforestation. Also, this result shows the importance of increasing the establishment and growth of maple seedlings in plantation areas.
M Momeni, M Kalbasi, A Jalalian, H Khademi,
Volume 12, Issue 46 (1-2009)
Abstract

The forms and dynamics of soil phosphorus can be greatly affected by land use changes, which often involve changes in vegetation cover, biomass production and nutrient cycling in the ecosystem. Present research evaluates the impact of land use change on the amount of total organic and inorganic P, labile, moderately labile and nonlabile P pools in semiarid soils of central Zagros. Samples were collected from surface soils (0-10 cm) of i) of moderately degraded pasture (20-25% plant cover), ii) highly degraded pasture (5-10 % plant cover), and iii) cultivated field (10 years) in Soolegan sub watershed and i) moderately degraded pasture (25-30 % plant cover) and ii) highly degraded pasture (5-10 % plant cover) in Sadat Abad sub-watershed. Significantly (P<0.05) low amounts of total organic P were found following cultivation (23.9%) and overgrazing (18.2 and 40.8 %) in Soolegan and Sadat Abad, respectively. The largest depletion of labile organic P (NaHCO3-Po) (72.3%) and moderately labile organic P (H2SO4-Po plus NaOH-Pi) (24.3%) were observed in cultivated rainfed land in Soolegan. Overgrazing led to decrease in labile organic P (42.1 and 64.4%), moderately labile organic P (13.9 and 35.7%) and nonlabile organic P (NaOH-Po) including moderately resistant and resistant organic P (12.9 and 44.4%) in Soolegan and Sadat Abad, respectively. Our results showed that degradation of natural plant cover cause to depletion in the soil P pools. Decreasing the amounts of moderately resistant and resistant P pools led to a decline in soil productivity and fertility.
M Noruzi, A Jalalian, Sh Ayoubi, H Khademi,
Volume 12, Issue 46 (1-2009)
Abstract

Crop yield, soil properties and erosion are strongly affected by terrain parameters. Therefore, knowledge about the effects of terrain parameters on strategic crops such as wheat production will help us with sustainable management of landscape. This study was conducted in 900ha, of Ardal district, Charmahal and Bakhtiari Province to develop regression models on wheat yield components vs. terrain parameters. Wheat yield and its components were measured in 100 points. Points were distributed randomly in stratified geomorphic surfaces. Yield components were measured by harvesting of 1 m2 plots. Terrain parameters were calculated by a 3×3 m spacing from digital elevation model. The result of descriptive statistics showed that all variables followed a normal distribution. The highest and lowest coefficient of variance (CV) was related to grain yield (0.36) and thousand seeds weight (0.13), respectively. Multiple regression models were established between yield components and terrain parameters attributes. The predictive models were validated using validation data set (20% of all data). The regression analysis revealed that wetness index and curvature were the most important attributes which explained about 45-78% of total yield components variability within the study area. The overall results indicated that topographic attributes may control a significant variability of rain-fed wheat yield. The result of validation analysis confirmed the above-stated conclusion with low RMSE and ME measures.
Gh Mesbahi, A Abasi, J Jalali, A Farahnaki,
Volume 13, Issue 47 (4-2009)
Abstract

In this research, tomato peel and waste seed obtained from tomato paste processing were dried and milled. The obtained powder was added to tomato ketchup sauce in different proportions (1, 2, 5, 7 and 10%). To study the effect of tomato peel and seed powder on physicochemical and nutritional properties of the tomato ketchup samples, the parameters including lycopen, total solid, brix, total sugars, reducing sugars, protein, fat, ash, fiber, vitamin C, pH, color (L, a/b) were evaluated. Rheological properties of the ketchup samples (consistency and viscosity) were determined and compared with control samples. Sensory evaluation of the ketchup samples was carried out after 1, 2 and 5 months of storage by a group of panelists. Addition of tomato peel and seed powder resulted in an increase in total solid, brix, ash, fiber, protein, fat, consistency and viscosity of the ketchup samples. Sensory evaluation tests did not show any significant difference between the color, flavor, texture and overall acceptability of the control and samples containing 1 or 2 % of tomato peel and seed powder. In addition, sensory evaluation tests did not show any significant changes in the ketchup samples during storage. Thus, it can be concluded that nutritional and rheological properties of tomato ketchup can be improved by addition of tomato peel and seed powder.
M Jalali Hajiabadi, A Sadeghi, N Mahbobi Sofiani, M Chamani, Gh Riazi,
Volume 13, Issue 47 (4-2009)
Abstract

In order to study the effects of L-carnitine on performance and some blood biochemical parameters of rainbow trout, the present experiment was conducted with 144 fish (130±5 g) for 8 weeks. In a completely randomized design, the experimental fish were divided into 9 groups with 3 treatments and 3 replicates and 16 fish in each group. Levels of L-carnitine supplements were 0 (control), 1 and 2 g per kg of diet. Results indicated that specific growth rate (SGR), total body weight, weight gain and protein efficiency ratio (PER) were significantly increased by 1g/kg L-carnitine supplements (P<0.05). L-Carnitine also improved feed conversion ratio (FCR) of fish. Crude protein of fish fillet was increased, but its crude fat was reduced at 1g/kg L-carnitine treatment. Similarly, cholesterol, total protein, albumin and globulin of fish blood serum were significantly (P<0.05) increased by the same levels of L-carnitine in the diet, however, blood glucose level remained unchanged. L-Carnitine reduced visceral fat index and increased hepatosomatic index. In conclusion, the results of the present study indicated that the addition of 1g L-carnitine per kg of diet could improve the performance of rainbow trout at grower stage.
M Nael , A Jalalian1 , H Khademi, M Kalbasi, F Sotohian, R Schulin,
Volume 14, Issue 51 (spring 2010)
Abstract

Geologic and pedologic controls are the main factors determining the behavior of elements in natural soil environments. In order to assess the role of these factors on content and distribution of selected major and trace elements in soil, six parent materials including: phyllite, tonalite, periditite, dolerite, shale and limestone were selected in Fuman-Masule region. Soil genesis and development of representive residual pedons were studied for each parent material and the total content of Si, Al, Ca, Mg, Fe, Ti, Mn, Ni, Co, Cr, Cu, Pb, V and Zn were compared among them. Enrichment/depletion patters of trace elements were assessed using Ti as reference element. Generally, Cr, Ni, Co and V are highest in soils derived from peridotite (984, 285, 53 and 204 mg/kg, respectively) and dolerite (1023, 176, 39 and 185 mg/kg, respectively). In the same way, Si and Al exhibit the features of parent materials in the sense that the lowest content was observed in soils developed on peridotite, dolerite and limestone. Zinc and Pb are highest in soils derived from shale (106 and 27 mg/kg, respectively). In a given pedon, different elements exhibited different enrichment/depletion patterns moreover, a given element may behave differently not only in soils with different parent materials but also, in some cases, in soils developed on similar lithology. Lead, Zn, Cu and Mn have been generally enriched in most pedons, except in some acidic and strongly leached soils, whereas Co, Cr, Fe, Ni and V have been leached, especially from Dystrudepts and Eutrudepts. The latter elements, however, showed enrichment trend in Hapludalfs and Argiudolls parallel to the development of illuvial B horizons.
A Jalali, M Galavi, A Ghanbari, M Ramroudi, M Yousef Elahi,
Volume 14, Issue 52 (sumer 2010)
Abstract

Using treated wastewater led to increasing crop yield, but it may causes heavy metals accumulations and also their toxicity in soil and plant. In order to investigate the effects of wastewater on yield, forage yield components, and heavy metals concentrations in stem and leaf of sorghum, an experiment was conducted in the agricultural Research Institute of Zabol University in 2006-2007, using a randomized complete block design with four replication. The irrigation treatments were: 1) well water for whole growing season as control (T1), 2) well water for all growing season along with NPK application (T2), 3) wastewater during the first half of growing season (T3), 4) wastewater during the second half of growing season (T4), 5) wastewater and tapwater alternately (T5) and 6) wastewater for whole growing season (T6). The results showed that irrigations with wastewater and well water alternately and wastewater for whole growing season produced the maximum forage yield and the maximum heavy metal accumulation in plant organs observed by irrigation with wastewater for hole growing season, and wastewater and well water alternately. There was significant increase between T5 and T6 relative to control and other treatments. The elements concentration such as Cu, Pb and Fe in leaf was more than stem, but Zn and Ni concentration in stem were more than leaves. There were no significant differences for Mo and Cr concentration between stem and leaf. Forage yield in T6 and T5 relative to T2 were increased 38.96 and 51.95 percent respectively. In all irrigation treatments the amount of elements and heavy metals in sorghum were lower than standard limits. Based on the results, alternative irrigation method (T5) is recommended for forage sorghum production.
M. Nael , A. Jalalian , H. Khademi , M. Kalbasi , F. Sotohian , R. Schulin ,
Volume 14, Issue 54 (winter 2011)
Abstract

Geologic and pedologic controls are the main factors determining the distribution of elements in natural soil environments. In order to assess the role of these factors in the content and distribution of major elements of soil, six parent materials including phyllite (Ph), tonalite (To), periditite (Pe), dolerite (Do), shale (Sh) and limestone (Li) were selected in Fuman-Masule region. Soil genesis and development of representive residual pedons were studied for each parent material. Total content of Si, Al, Ca, Mg, Fe, Mn, K, Na, Ti and P of soil horizons were measured and compared to the geochemical and mineralogical composition of parent materials. Maximum concentrations of Fe2O3 and MgO were found in the soils derived from Pe and Do however, these soils had low content of SiO2 and Al2O3, which is in conformity with the geochemical composition of the parent rocks. On the contrary, FeCBD content of these soils was lowest, indicating the low degree of soil development and, by the same fact, the importance of inheritance factor in soil Fe concentration. However, comparison of total Fe and FeCBD in Li1, Sh2 and To2 revealed that relative development of these pedons is higher than the others. Silicon depletion in Ph1, To2 and Sh2 pedons, relative to parent rocks, is higher than in Pe and Do pedons. However, this element is enriched in Li pedons. MnO content of Pe and Do pedons is governed by geogenic factors, while in Sh pedons, pedogenic factors, especially redox conditions, play the major role. Exchangeable forms of Ca and Na are determined by soil properties rather than by parent material type. Notwithstanding the redistribution of all major elements throughout pedons due to soil forming processes, the importance of inheritance factor in soil Si, Al, Mg, Fe, K, and Ti is higher than pedogenic factors.
V. R. Jalali , M. Homaee,
Volume 15, Issue 56 (sumer 2011)
Abstract

Soil bulk density measurements are often required as an input parameter for models that predict soil processes. Nonparametric approaches are being used in various fields to estimate continuous variables. One type of the nonparametric lazy learning algorithms, a k-nearest neighbor (k-NN) algorithm was introduced and tested to estimate soil bulk density from other soil properties, including soil textural fractions, EC, pH, SP, OC and TNV. As many as eight nearest neighbors, based on cross validation technique were selected to perform bulk density prediction from the attributes of 136 soil samples. The nonparametric k-NN technique mostly performed equally well using Pearson correlation coefficient (r=0.86), root-mean-squared errors (RMSE=2.5) maximum error (ME=0.15), coefficient of determination (CD=1.3), modeling efficiency (EF=0.75) and coefficient of residual mass (CRM=0.001) statistics. It can be concluded that the k-NN technique is an alternative to other techniques such as pedotransfer functions (PTFs).

Page 2 from 3     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb