Showing 150 results for Irrigation
R. Jamali, S. Besharat, M. Yasi, A. Amirpour Deylami,
Volume 22, Issue 3 (11-2018)
Abstract
The irrigation and drainage network of Zarrinehroud with an area of 65,000 hectares is the most important network of Lake Urmia basin, with the direct link to the lake. With the current crisis in the lake, an assessment of the existing network's performance is essential in the Urmia Lake Rescue Program. The purpose of this study was, therefore, to evaluate the transmission, distribution, and utilization efficiency and irrigation efficiency at the surface of the network. Three products were selected from the cultivar with the highest crop area (10% beet, 22% and 22%, and 38% wheat). The dominant method of irrigation was surface irrigation. At the network level, soil moisture in the field before and after irrigation, soil physical and hydraulic properties and water use volume for irrigation were measured. The results showed that the average transmission efficiency in canals with the concrete coating of the network was about 79%, which was in the range of 33% (in the smaller channels) to 100% (in the larger channels). The water distribution efficiency in the network was, on average, 76%, varying from 50% to 100%. Water use efficiency in the fields based on soil moisture balance analysis varied from 41% in the sandy loam soils to 66% for the clay texture. Based on the analysis of the data on the amount of harvest, production costs and product sales price, the water use efficiency (in kilograms of product per cubic meter of water used) varied from 0.4 for the elderly hay to 5.1 for the sugar beet. The amount of water used in this network (in Rials per cubic meter of water consumption) was between 2740 for alfalfa aged over 10 years and 6900 for wheat. It can be concluded that in the case of water constraints, wheat, sugar beet and alfalfa could be the most economic cultivar, respectively.
M. Yazdekhasti, M. Shayannejad, H. Eshghizadeh, M. Feizi,
Volume 22, Issue 3 (11-2018)
Abstract
Due to the dry climate and limitation of fresh water resources, using fresh and salt water is a solution for crop production under salinity conditions. This study was conducted at Isfahan University of Technology as a randomized complete block design with three replications and five irrigation management treatments in 2014. The treatments included irrigation with saline water (with the salinity of 5 dS/m, based on the relative yield of 75%), irrigation with fresh water (municipal water), alternate irrigation (irrigation with saline water and the next irrigation with fresh water), conjunctive irrigation (half of irrigation with saline water and the other one with fresh water) and irrigation with fresh water to reach the raceme stage, and irrigation with saline water. The maximum wet yield, dry yield and grain yield were related to the fresh water treatment with 4.14, 2.45 and 0.588 kg/m2 and the minimum values were obtained for water their water treated with 1.34, 0.765 and 0.0957 kg/m2 respectively. The conjunctive treatment had the highest yield after fresh water treatment. The various statistical indices showed that this model could be used for sorghum in Isfahan. The determination coefficient for yield was 0.65.The priority of model for yield simulation was salt water at the last stage, alternate irrigation, saline water, conjunctive irrigation and fresh water treatments, respectively.
A. Hemmati, H. Asadi Rahmani,
Volume 22, Issue 4 (3-2019)
Abstract
In order to study the effects of rhizobium bacteria and arbuscular mycorrhizal fungi on water use efficiency and the grain yield of bean, under drought stress conditions, two-year year field experiments were conducted during 2015 and 2016 growing seasons. The experimental design was a split plot arranged in an RCBD with 4 replications. Three irrigations including S1= 95-100% AW (Normal irrigation), S2= 75-80% AW(Moderate drought stress) and
S3= 55-60% AW (severe drought stress) were assigned to the main plots and six bio fertilizer treatments including T1=177 rhizobium bacteria strain, T2=160 rhizobium bacteria strain used for seed inoculation, T3= mycorrhizal arboscular fungi used for soil inoculation, T4= T1+T2, T5= T1+T2+T3 and T6= control (no seed and soil inoculation) were randomized to the subplots. Based on the combined analysis of variances for two years, there were significant differences (p˂0.05) in the grain yield, yield components and water use efficiency between the irrigation stress and bio fertilizer treatments. The highest grain yield (2371 kg ha-1) and water use efficiency (522 g m-3) were obtained in the S2T2 treatment. In this treatment, 160 and 177 rhizobium bacteria (T2) in moderate drought stress (S2) were used. These results suggested that inoculation with the rhizobium of seed bean in arid and semi-arid areas could improve yield, water use efficiency and resistance to drought stress by increasing the growth in the root and shoot of the plant.
H. Nozari, S. Azadi, V. Rezaverdinejad,
Volume 23, Issue 1 (6-2019)
Abstract
Due to the growing population, crop production is one of the essential needs of the society. Since soil and water salinity can have a great impact on the crop yield loss; so, the appropriate irrigation method can be applied to reduce these effects. In this study, the system dynamics model was developed using VENSIM. The model simulated the effect of salinity and water stress on the crop yield, moisture and salinity of the root zone. In order to calibrate and validate the model results, 9 treatments data were collected from the Right Abshar Irrigation Network, on the Zayandehrud basin. After statistical analysis and calculation of RMSE index and the standard error, the fit between the measured and simulated crop yield, the moisture and salinity of root zone was calculated. The average of these indexes for all treatments was 2776.98 kg/ha and 0.07 for crop yield, 0.026 and 0.09 for soil moisture and final, 0.54 dS/m and 0.08 for the salinity of root zone, respectively. The results showed that the model could be calibrated accurately and completely in estimating the crop yield with the reasonable accuracy.
F. Soroush, B. Mostafazadeh-Fard, S. F. Mousavi, F. Abbasi,
Volume 23, Issue 1 (6-2019)
Abstract
Infiltration is the most important characteristic in the design and management of any surface irrigation system. Since the hydraulic of flow in meandering furrows is different from the standard furrows, the accuracy of infiltration function parameter estimation methods should be examined for the optimal design and management of meandering furrow irrigation. The main objective of this study was to compare Elliot and Walker’s two-point and two-time methods for estimating the empirical infiltration function parameters of meandering furrow irrigation using four sets of field data. The estimated infiltration functions, as obtained by the two methods, were validated by performing the unsteady flow simulations and using the Slow-change/slow-flow (SC/SF) model. The results showed that Elliot and Walker prediction of the advance trajectories (with a mean RMSE of 0.68 minutes) was comparable to the two-time method (with an average RMSE of 0.66 min). The Nash–Sutcliffe efficiency coefficient for the simulated outflow hydrograph by the two-time and two-point methods was 0.89 and 0.50, respectively, indicating the excellent predictive power of the two-times method. In addition, the two-time method predicted the total volume of infiltration with the less relative error (-1.5%), in comparison to the two-point method (-47.2%). Therefore, the use of post-advance data (such as a two-time method) for infiltration function parameters estimation improves the flow simulation in the meandering furrows.
A. Shabani,
Volume 23, Issue 2 (9-2019)
Abstract
Shortage of irrigation water is a major problem constraining in agricultural production in arid and semi-arid regions. Deficit irrigation is one way to cope with water scarcity and increase water use efficiency. Determining the optimum applied water based on economic analysis is a major key to the deficit irrigation strategy. In this study, the required equations were derived to determine the optimum applied water for sugar beet when crop price is a function of the applied water. The results showed that the optimum applied water under land limiting conditions (144.98 cm) resulted in the maximum net benefit per unit area (2089741 Rials ha-1). Applying the optimum water depth under land limiting resulted in 17.48% decrease in the applied water and 15.05% increase in the total net benefit, in comparison with the maximum yield condition. In water limiting conditions (land is not limiting), the total net benefit was maximized by applying the saved water to put larger areas of land under irrigation. Applying the optimum water depth under water limit condition resulted in 31.2% decrease in applied water and 45 and 52.36% increase in the planting area and the total net benefit, in comparison with the maximum yield condition, respectively. Sugar beet planting can be, therefore, profitable if the applied water depth is greater than 67.53 cm in this study area.
Z. Amiri, M. Gheysari, M. R. Mosaddeghi, M. S. Tabatabaei, M. Moradiannezhad,
Volume 23, Issue 2 (9-2019)
Abstract
Location of soil moisture sampling in irrigation management is of special importance due to the spatial variability of soil hydraulic characteristics and the development of root system. The objective of this study was determination of the suitable location for soil moisture sampling in drip-tape irrigation management, which is representative of the average moisture in the soil profile (θavg) as well. For this purpose, soil moisture distribution (θij) at the tassel stage of maize and one irrigation interval (68-73 day after plant) were measured at the end of season. The results showed more than 70% length of the root of plant was located in 30 cm of the soil depth. By accepting ±10% error in relation to the averaged soil moisture, some region of soil profile was determined which was in the acceptable error range and also near the averaged soil moisture (0.9θavg<θRec<1.1θavg). By overlapping θRec in one irrigation interval, the appropriate location for soil moisture sampling was the horizontal distance from drip-tape line to 20 cm and the depth of 10-20 cm from the soil surface. To determine the appropriate place for soil moisture sampling, the development of root system and the maximum concentrated root length density in the soil profile extracting the maximal soil moisture should be taken in to account, parallel with the averaged soil moisture.
B. Navidi Nassaj, N. Zohrabi, A. Shahbazi,
Volume 23, Issue 2 (9-2019)
Abstract
Integrated simulation of water resources systems is an efficient tool to evaluate and adopt various options in macro-policies and decision-making procedures that are in line with the sustainable development of drainage basins. One of the drainage basin management policies is to enhance the efficiency of agricultural land use. Considering the complicated function of the drainage basin elements and their interaction with each other due to water discharge fluctuations caused by various factors such as climate change, the evaluation of these policies is of great importance. Given the low irrigation efficiency in Iran, the present study was aimed to evaluate the effects of management scenarios (including long-term irrigation efficiency increased up to 20% with 5% intervals) and discharge fluctuation scenarios (including 5% and 10% decrease in the average basin inflows) on the reliability and vulnerability of water resources system in Dez Basin. The integrated scenarios were simulated in the WEAP model. The scenarios were separately simulated for the Dez irrigation network and all farmlands across Dez Basin. According to the results, reliability was decreased by 5.69 and 18.89% in the scenarios with 5% and 10% decrease in the average basin inflows, respectively. Furthermore, the irrigation efficiency of 20% in the scenario considering the current inflows ended up with the reliability of 73.58%. Moreover, in the scenario involving 5% decrease in the average basin inflows, the reliability was increased by 3.8% with an increasing efficiency of 20%; with 3.8% and 5.7%, there was an increasing efficiency of 15% and 20% in all farmlands, respectively. In the scenario consisting of 10% decrease in average basin inflows, the reliability was increased by 1.91%, 3.8%, and 5.7% with the increasing efficiency of 10%, 15%, and 20%; on the other hand, with, these were 3.8% 9.46%, and 13.2% with increasing efficiency in all farmlands, respectively. In all scenarios, the vulnerability was found to fluctuate between 25% and 31%, which was systematically analyzed.
P. Shojaei, M. Gheysari, H. Nouri, H. Esmaeili, S. Eslamian,
Volume 23, Issue 3 (12-2019)
Abstract
Creation and conservation of urban parks is challenging in arid environments where daily thermal extremes, water scarcity, air pollution and shortage of natural green spaces are more conspicuous. Water scarcity in the arid regions of Iran is major challenge for water managers. Accurate estimation of urban landscape evapotranspiration is therefore critically important for cities located in naturally dry environments, to appropriately manage irrigation practices. This study investigated two factor-based approaches, Water Use Classifications of Landscape Species (WUCOLS) and Landscape Irrigation Management Program (LIMP), to measure the water demand in a botanic garden. The irrigation water volume applied was compared with the gross water demand for the period from 2011 to 2013. On average, WUCOLS estimated an average annual irrigation need of 1164 mm which is 15% less than the applied value of 1366 mm while the LIMP estimate of 1239 mm was 9% less than the applied value. Comparison of estimated and applied irrigation showed that a water saving of 9% can be made by the LIMP method. The outcomes of this research stressed the need to modify the irrigation requirements based on effective rainfall throughout the year, rather relying on long-term average data.
S. Mirbagheri, M. Naderi, M. H. Salehi, J. Mohammadi,
Volume 23, Issue 3 (12-2019)
Abstract
Rivers are one of the most important source of water supply for drinking and farming purposes. Zard River is one of the surface water resources of Khuzestan province. The purpose of this study is to evaluate the quality of the river water and to observe the trend of changes in the water quality of this river in the Mashin station during the period of 1997-2015 by using the Man-Kendal, Spearman, variance analysis statistical methods and the least significant difference (LSD) and cluster analysis. LSD test shows SAR, Na, Cl, pH parameters up to 2010 (before Jare dam construction) were significant at 95% confidence level compared to 2015 (year of control). No changes were made after dam construction. According to Mann-Kendal non-parametric test, pH, Ca and SO4 have a significant upward trend to the 0.037, 0.393 and 0.376 respectively, the variables Cl, SAR, Na and temperature have a significant decreasing trend to the -0.387, -0.417, -0.386 and -0.1 respectively. Also Spearman test shows that the dam improved the quality of river water regarding to salinity. Variance analysis show that pH, SAR, Na, Cl, Ca and SO4 have significant difference. Cluster analysis classified the qualitative data before the construction of the dam in three clusters and after the construction of the dam were divided into two clusters where TDS variable was less distant than other variables. As a result, the quality of the irrigation water is changed downward and the TDS is more similar to the other variables compared.
L. Neisi, P. Tishehzan,
Volume 23, Issue 3 (12-2019)
Abstract
Rivers are one of the most important source of water supply for drinking and farming purposes. Zard River is one of the surface water resources of Khuzestan province. The purpose of this study is to evaluate the quality of the river water and to observe the trend of changes in the water quality of this river in the Mashin station during the period of 1997-2015 by using the Man-Kendal, Spearman, variance analysis statistical methods and the least significant difference (LSD) and cluster analysis. LSD test shows SAR, Na, Cl, pH parameters up to 2010 (before Jare dam construction) were significant at 95% confidence level compared to 2015 (year of control). No changes were made after dam construction. According to Mann-Kendal non-parametric test, pH, Ca and SO4 have a significant upward trend to the 0.037, 0.393 and 0.376 respectively, the variables Cl, SAR, Na and temperature have a significant decreasing trend to the -0.387, -0.417, -0.386 and -0.1 respectively. Also Spearman test shows that the dam improved the quality of river water regarding to salinity. Variance analysis show that pH, SAR, Na, Cl, Ca and SO4 have significant difference. Cluster analysis classified the qualitative data before the construction of the dam in three clusters and after the construction of the dam were divided into two clusters where TDS variable was less distant than other variables. As a result, the quality of the irrigation water is changed downward and the TDS is more similar to the other variables compared.
B. Moravejalahkami,
Volume 23, Issue 3 (12-2019)
Abstract
Furrow irrigation is the most common method of surface irrigation. However, the accurate estimation of the soil water infiltration equation is the most important challenge for evaluating this method of irrigation. In this study, a fast and simple method that is named soil intake families and presented by USDA-NRCS (RSIF), evaluated for estimation of the Kostiakove-lewis infiltration equation parameters based on soil information. Also, this method was developed based on irrigation condition and considering soil characteristics (D-RSIF). Two treatments including constant and variable inflow discharge were tested with 4 repetitions and different irrigation phases including advance, storage and recession were simulated by developed Zero-Inertia model using RSIF and D-RSIF methods. The results showed that using the zero- inertial model, the difference between simulated advance times and simulated runoff were significant at 5% level for D-RSIF and RSIF methods. For variable inflow discharge, the error of estimating runoff volume was 10%, 6%, 12% and 41% for RSIF, D-RSIF, multilevel calibration and two-point methods respectively. Also, the irrigation scheduling error, based on soil physics characteristics (RSIF) was 14% that means consuming water more than required.
Z. Shirkhodaei, F. Aghayari, H. Hasanpour Darvishi,
Volume 23, Issue 4 (2-2020)
Abstract
There are new technologies such as geographic information systems (GIS) that can be effective in the optimization of irrigation water. Therefore, utilizing these resources in a desirable, effective and efficient manner to ensure sustainable development is one of the most important issues in the today's world. The aim of this study was to determine and evaluate the potential water use efficiency (WUEp) index in the plain scale by using net water requirement data, area under cultivation and yields, and to determine the comparative advantage of wheat and barley plants in Tehran, Alborz, Qom, Qazvin and Zanjan provinces by employing the geographic information system (GIS). The yields of wheat and barley products by weighted average in ArcGIS software were converted to yields in the plains scale. To calculate the potential and actual water use efficiency, we used the OPTIWAT software in order to calculate the net irrigation water and the current irrigation efficiency plains; also, the yields of wheat and barley products in the plains scale were used. Zoning water use efficiency indexes was performed by using the ArcGIS software and Kriging method. Mapping results showed a comparative advantage of crops in the west and northwest of Tehran province, south and southwest of Alborz province, southwest, north- west and center of Qazvin province, center Qom province and also, northern and southern regions of the Zanjan province, in comparison to other areas. Average potential and actual water use efficiency in the whole study area of the provinces for wheat were 1.43 and 0.58 kg m-3, respectively, while these were 1.62 and 0.65 kg m-3 for barley, respectively.
M. Arabfard, A. Shahnazari, M. Ziatabar,
Volume 23, Issue 4 (2-2020)
Abstract
Localized irrigation methods can be used to manage low water holding capacity in the sandy soils. In this research, the effects of different irrigation systems including pot, tape and drip irrigation with gravity pressures of 0.5, 1.5 and 3 meters on the sandy soil moisture distribution under watermelon cultivation were compared with the furrow irrigation as the control treatment. The moisture content of the soil at different depths and at the distance of 5 and 20 cm from the plant was measured using the TDR device. Water distribution study showed that in the pot irrigation method, the moisture content of different depths of soil was kept constant by 16% during the irrigation interval, but the highest moisture content was observed in gravitional drip irrigation treatment at the depths of 40, 50 and 60 cm; in contrast, the lowest amount of moisture was observed in the pot irrigation treatment. In tape and gravitional drip irrigation system with gravity pressure, in addition to the adjustment soil moisture up to 15 to 22% within the wetting front, soil moisture can be kept almost constant by pulsed irrigation technique. Therefore, while providing the use of drip irrigation system with minimum water pressure available in most of the agricultural land (0.5 m), using pot irrigation can ensure sandy soil moisture retention and soil for the cultivation of fruits such as watermelon plants.
A. Ebrahimi, M. Shayannejad, M. Reza Mosaddeghi,
Volume 23, Issue 4 (2-2020)
Abstract
Wetting pattern in a trickle irrigation system is one of the most important characteristics that should be taken into consideration for designing the irrigation systems. Improving the dimensions of the wetting pattern will increase the water use efficiency and irrigation systems. The objective of this study was to investigate the effect of rice husk and its biochar application on the wetting pattern in a silty clay soil under surface trickle irrigation. A box with the length of 200, the width of 50 and the height of 100 cm was used. To easily fill and empty the model, it was filled up to a height of 50 cm. The rice husk and its biochar were added to the soil at the rates of 0, 1 and 2 mass percentages based on a factorial arrangement of the treatments in a completely randomized design with three replications. Biochar was prepared in a special furnace at 500°C without oxygen. The experiments were done with a flow rate of 4 liters per hour with the irrigation time of 3 hours. The results of the analysis of variance showed that the organic treatments increased the soil water content in the range of field capacity to a permanent wilting point; the highest increase was observed for the biochar 2% treated soil. Also, the addition of rice husk and biochar in the silty clay soil reduced the horizontal advance and increased the vertical advance wetting pattern.
M. Mokari, H. Dehghan, M. Taherian,
Volume 23, Issue 4 (2-2020)
Abstract
In order to investigate the effect of new deficit irrigation strategies on the quantitative characteristics and water productivity of two field grown corn cultivars, a split plot experiment was conducted as a randomized design in three replications. The irrigation treatments included full irrigation treatment (FI), static deficit irrigation (SDI), dynamic deficit irrigation (DDI), static partial root zone drying irrigation (SPRD), which received 75% of ET during the growth period, dynamic partial root zone drying irrigation (DPRD), which received 90% of ET in the first one- third of the growth period, 75% of ET in the second one- third of growth period, and 50% of ET in the last one- third of the growth period. The results showed that there were significant differences between irrigation strategies. The SDI, DDI, SPRD and DPRD irrigation treatments decreased the corn yield by 18%, 27%, 49% and 53%, as compared to FI, respectively. The results also showed that there were no significant differences between cultivars. Compared to FI, the SDI increased WP by 14%, but DDI, SPRD and DPRD decreased WP by 3%, 19% and 44%, respectively. According to economic analysis, irrigation optimum depth for the maximum net profit was obtained to be 858.5 mm. In general, the SDI strategy is recommended in the study area.
A. Rigi Karvandri, A. Mehraban, H. R. Ganjali, Kh. Miri, H. R Mobser,
Volume 23, Issue 4 (2-2020)
Abstract
Water scarcity is the most important factor constraining agricultural production all over the world and water shortage in agriculture must be established to use the deficit irrigation. In order to study the effects of the regulated deficit irrigation and partial root zone drying on the growth traits of Rosmarinus Officinalis L., an experiment was conducted in the center of seed and plant production of IranShahr municipality in 2017. The experiment treatments were arranged as a randomized complete block design with three replications. The irrigation regimes consisted of full irrigation, regulated deficit (RDI75 and RDI55) and partial root zone drying irrigation (PRD75 and PRD55). The results showed that deficit irrigation at 75 and 55 percent of full irrigation resulted in saving 18.6 and 34.3 percent of water consumption, respectively. Comparison of full irrigation and PRD75 showed that dry weight, height of plants and number of shoots per plant were decreased by 6.7, 14.3 and 12.1 percent, respectively. However, proper development of root in PRD75 increased 12.9 percent of water productivity. Therefore, by considering the problems of water scarcity, it is possible to provide PRD75 as a superior treatment and a suitable strategy to cope with the water crisis in order to move towards a sustainable agricultural system.
M. Khast, M. Hesam, A. Hezarjaribi, O. Mohamadi,
Volume 24, Issue 1 (5-2020)
Abstract
Due to the increasing number of small crops, the system of irrigation without a pump can be an economical way. Therefore, in this research, the effects of the type of droplet and the height of water supply system utilization on the characteristics of water distribution (discharge, dispersion uniformity coefficient (CU) and coefficients of variation of discharge) were investigated. In this research, the pressure functions of 1, 2, 3 and 4 meters and three irrigation repeats were investigated; also, the discharge characteristics of jet pots of 2 and 8 nozzles, easy dripper and netafim were addressed. The results indicated that at 1 m pressure, drippers of pots of 2 and 8 nozzles with the uniformity coefficients of distribution were equal to 89.39 and 99.30%, and the discharge rate was 3.60 and 3.62 liters per hour at a pressure of 2 m. An easy-drain drip with a discharge rate of 3.85 L / h and a uniform distribution of 99.44%, at a height of 3 and 4 m, the droplets of the netafim with an outlet discharge were 3.87 and 3.97 liters per hour and the uniformity coefficients of 99.32 and 99.47 percent had the best broadcast conditions. According to these significant differences (P <0.05), it can be concluded that at pressures less than 2 m of jar droplets and at more than 3 m, netafim and Easy Dipper types could have better leakage due to pressure regulators. In general, each of the four types of emitters produced a uniform dispersion and the optimum discharge at different pressures.
Y. Hassani, S. M. Hashemy Shahdany, B. Zahraei,
Volume 24, Issue 1 (5-2020)
Abstract
This study focused on proposing a new operational perspective within main and lateral irrigation canals based on the economic value of water. To achieve this objective, the operation-economic framework offered in this study consisted of two main components of the PMP model and Operation model. The estimated economic values of water in different regions of the network were employed as the starting point for connecting the economic model with the operation model. It is worth mentioning that the technical perspective targeting adequacy of water distribution within the canals was modified in this study to be applied for the operation-economic framework since the original forms of the indicator were based on physical inherent of the water. Roodasht Irrigation District, located at Zayandeh-Rud basin, was selected as the case study, and the proposed framework was tested on the district. The obtained results revealed that in response to implementing the proposed framework in water distribution within the canal under the water shortage condition, alfalfa and safflower were the two crops those cultivation was decreased drastically in comparison with the other crops. The primary reason for the decrease was the lower values of the economic value of water for these two crops. Also ,the results of the canal operation appraisal from the adequacy of water delivery revealed that for the traditional operating system (without considering the economic perspective), the maximum values of the adequacy indicator were obtained for the upstream four canal reaches. On the other hand, the off-takes numbers of 1, 6, 5, and 12 got the maximum values of the adequacy indicator when the proposed operation-economic framework was applied for the canal system.
N. Abbasi, A. Heydari Pakroo, R. Bahramloo,
Volume 24, Issue 2 (7-2020)
Abstract
The use of additives to modify the physical, chemical and mechanical properties of soil and soil stabilization is one of the most common methods that have a history. By adding one or more additives to the soil and carrying out the required measures, the engineering properties of soils could be improved due to chemical reactions. Selecting the type and amount of additive depends on several factors such as: soil type, stabilization purpose, additives inherent characteristics, etc.; these are determined based on the technical and economic aspects of the projects. In this study, the effects of the simultaneous use of three types of additives including lime, stone powder and polypropylene fibers on the unconfined compressive strength of a clayey soil were investigated. To do this, four different levels of lime (0, 2, 3 and 5 percent by weight of soil) and four different levels of stone powder waste (0, 2, 5 and 10 percent by weight of soil) and Polypropylene fibers with different percentages in five levels of 0, 0.25, 0.5 and 1 percent by weight of soil were added into a high plastic clay soil classified as CH. Then, some physical and mechanical characteristics of different mixtures including plasticity, compaction and unconfined compressive strength were determined. The results showed that the samples were stabilized with lime and stone powder waste and reinforcement them with polypropylene fibers modified Atterberg Limits, optimum moisture and maximum dry density of the mixtures. Also, it was found that a combination of waste stone powder, lime and polypropylene fibers containing 5, 5 and 1 percent by weight of soil increased the unconfined compressive strength 8-fold, as compared to the natural soil. The curing time also had a significant impact on the compressive strength of the treated samples in which the 28-day compressive strength of was found to be about 2 times of the 7-day samples.