Showing 70 results for Can
A. Veisitabar, A. Hemmat, M. R. Mosaddeghi,
Volume 19, Issue 72 (8-2015)
Abstract
Considering soil compaction problem in sugarcane fields due to using heavy harvester and haulout equipment under unsuitable moisture conditions, this research aims to assess soil compaction in sugarcane fields located in Da'balKhazaei Plantation unitofSugarcane Development and By-product Company, Ahvaz. Undisturbed soil samples from the furrow (wheel tracks) were collected for measuring soil water content and bulk density. Considering the changes in soil texture of sugarcane fields, for expressing the degree of soilcompactness, in addition to soil bulk density (BD), relative bulk density (BD divided by reference BD) was also determined. The change in soil mechanical resistance with depth was determined by a cone penetrometer. Results showed that most of soil BD values measured in the sugarcane fields were in the range of small root development scale (high limitation). Comparingthe calculated RBD values with optimum value (0.85), it was observed that most of the values were higher than the optimum values recommended for root growth. This shows excessivesoil compaction in the sugarcane fields. The values of cone indices measured in soil profiles indicated that most of the values were higher than either limiting (2 MPa) or critical (3 MPa) values for root growth. Therefore, for improving soil physical fertility and achieving sustainability in crop production, management of farm machinery traffic in sugarcane fields, especially at the harvest time, needs to be reconsidered.
H. R. Motaghian, A. R. Hosseinpur, J. Mohammadi, F. Raiesi,
Volume 20, Issue 75 (5-2016)
Abstract
Zinc (Zn) is one of the essential micronutrients for plant growth and its deficiency frequently occurs in calcareous soils. But, a suitable extractant for estimation of plant-available Zn in calcareous soils, amended with sewage sludge, has not been presented yet. The aim of this research was to assess several chemical extractants (7 extractants) for estimation of available Zn in calcareous soils amended (1% w/w) and unamended with sewage sludge. Results showed that Mehlich 3 and Mehlich 1 extractants extracted the highest and the lowest concentrations of Zn in both amended and unamended soils, respectively. All wheat indices (wheat yield, Zn concentration and Zn uptake) increased by sewage sludge addition. Besides, the results indicated that in unamended soils, significant correlations were found (r=0.65*- 0.91**) between extracted Zn using AB-DTPA, DTPA-TEA and Mehlich 3 extractants and different wheat indices. On the contrary, in sewage sludge-amended soils, only the correlation between extracted Zn using Mehlich 2 and Zn concentration was significant (r=0.83**). According to this study findings, the suitable extractant for extracting wheat-available Zn is thoroughly different in calcareous soils amended and unamended with sewage sludge.
M. M. Matinzadeh, J. Abedi Koupai, H. Nozari, A. Sadeghi Lari, M. Shayannejad,
Volume 20, Issue 76 (8-2016)
Abstract
In this research, a comprehensive simulation model for water cycle and the nitrogen dynamics modeling including all the important processes involved in nitrogen transformations such as fertilizer dissolution, nitrification, denitrification, ammonium volatilization, mineralization, immobilization as well as all the important nitrogen transportation processes including nitrogen uptake by the plant, soil particles adsorption, upward flux, surface runoff losses and drain losses, was used for fertilizer management modeling in a sugarcane farmland in Imam Khomeini Agro-Industrial Company using a system dynamics approach. For evaluating the model the data collected from Imam Agro-Industrial Company equipped with a tile drainage system with shallow ground water and located in Khuzestan province, Iran, were used. The statistical analysis of the observed and simulated data showed that the RMSE for determining the accuracy of simulation of the nitrate and ammonium concentration in drainage water is 1.73 mg/L and 0.48 mg/L, respectively. The results indicated that there is good agreement between the observed and the simulated data. Nine scenarios of fertilization at different levels of urea fertilizer were modeled including one scenario of 400 kg/ha, two spilit scenarios of 350 kg/ha, two spilit scenarios of 325 kg/ha, two spilit scenarios of 300 kg/ha, one scenario of 280 kg/ha and one scenario of 210 kg/ha. Results of the modeling showed that the scenario of 210 kg/ha has the highest nitrogen use efficiency (52.3%) and the lowest nitrogen losses consisted of denitrification, ammonium volatilization and drainage losses (17.82, 7.16 and 92.59 kg/ha, respectively). The results revealed that increasing the consumption of urea fertilizer greater than 210 kg/ha increased the overall nitrogen losses and reduced the nitrogen use efficiency. Meanwhile, this model can be used for managing the fertilizer and controlling the nitrate and ammonium concentrations in the drainage water to prevent the environmental pollution. Also, the system dynamics approach was found as an effective technique for simulating the complex water-soil-plant-drainage system.
M. Golabi, M. Albaji, A. Naseri,
Volume 21, Issue 3 (11-2017)
Abstract
In the present study Hydrus-1D software was used to simulate electrical conductivity, pH and sodium, potassium, calcium, magnesium, chloride and sulfate ions. Field experiments were performed at the Sugarcane Research Center located in south of Ahvaz on sugarcane varieties CP48-103 with four water treatments (one treatment was Karun river water and three treatments were diluted drainage water) and three replications. The samples were collected from 0-30, 30-60 and 60-90 cm soil depth before irrigation and electrical conductivity and anions and cations of soil were measured in the laboratory. Sensitivity analysis and calibration were first performed with the aim of verifying the Hydrus-1D software. The sensitivity analysis indicated that the software had maximum sensitivity to the saturated volumetric water content. Minimum sensitivity was for the inverse of the air-entry suction, tortuosity parameter, residual volumetric water contents and moderate sensitivity was for hydraulic conductivity at natural saturation. Also, the software did not show any sensitivity to empirical parameter related to the pore size distribution that is reflected in the slope of water retention curve. In calibration stage the amount of hydraulic conductivity at natural saturation, residual volumetric water contents, saturation volumetric water contents, the inverse of the air-entry suction, empirical parameter related to the pore size distribution and tortuosity were obtained as 18 (cm/day), 0.04 (cm3/cm3), 0.63(cm3/cm3), 0.012 (cm-1), 1.2 and 0.6 respectively. The results showed that the coefficient of determination of all parameters was more than 0.85 which confirms the appropriate capabilities of the model in simulation of electrical conductivity, pH, anions and cations. In the modeling carried out the amount of NRMSE was between 11 and 18 percent which indicates good performance of the model. The Nash-Sutcliffe efficiency criterion was obtained 0.72 to 0.8 that indicates a good match of the model with reality. The coefficient of residual mass in this paper was positive for electrical conductivity, pH and sodium, potassium, calcium, magnesium and negative for chloride and sulfate. The positive and negative coefficient of the residual mass shows less and over estimation of the model.
P. Rostamizad, V. Hosseini, K. Mohammadi Samani,
Volume 22, Issue 2 (9-2018)
Abstract
Trees crown can be regarded as main factor contributing to the conservation and support of soil in many ecosystems including semiarid forests in Zagross. The aim of this study was to find out the effect of tree crown of pictachio (Pistacia atlantica Desf) on N, OC, P, pH, EC and the texture of the soil. Soil samples were collected in and outside the crown of 5 single pistachio trees on four directions of each tree in a northern slope from the 0-5 cm depth of soil in the Sarvabad region, Kurdistan. The results of this study showed that the amount of the soil organic carbon was decreased from 6.71% in the soil inside tree crowns to 4.73% in the soils outside the tree canopies. The soil inside trees had a higher concentration of soil nitrogen (0.406%) than the one outside (0.224%) the tree crown; the concentration of phosphorus was measured to be 32.7 mg/kg in the soil inside canopy, while it was 21.1 mg/kg in the soil of outside the tree canopy. EC under the tree crowns was more than that outside the canopy. The results, therefore, showed that soil texture was lighter inside the canopy, as compared to outside; however, the acidity of the soil was not affected by tree crowns and no significant differences were observed in different areas of the crown. Therefore, Persian turpentine trees have positive impacts on the soil properties in Zagros forests and eliminating them will lead to the significant loss of soil fertility and greater soil erosion.
M. Kazemi, H. Karimzadeh, M. Tarkesh Esfahani, H. Bashari,
Volume 22, Issue 4 (3-2019)
Abstract
Evaluating the possible relationships between vegetation and environmental characteristics can assist managers to identify effective factors influencing plants establishment and to characterize various vegetation communities. This study was aimed to evaluate the effects of long term grazing exclusion ( more than 33 years) and the controlled grazing system (resting – rotation grazing system) on the vegetation distribution and some soil properties in the Hamzavi research station in Hanna area-Semirom, Isfahan. Six transects (three parallel transects and three transects perpendicular to the general slope of the area) were established in each area and 10 square plots with the size of 2m2 were placed along each transect; then, the cover percentage, production and list of all plant species were recorded. In each area, eighteen plots were collected randomly and in each plot, five soil samples were collected from 0-30 cm of the soil and then the samples were mixed and one sample of the compound was selected as an evidence plot. Soil properties such as pH, EC, CaCO3, organic carbon, absorbable phosphor, total nitrogen, K, Ca, Mg, soil saturated percentage, cation exchange capacity, soil clay, silt, sand and fine sand contents were measured in the soil laboratory. The independent t test was used to compare the vegetation characteristics in two areas. Cation exchange capacity, CaCO3, gravel percentage, soil phosphor content and grazing management were identified as the most discriminative factors in separating vegetation communities based on Canonical correspondence analysis (CCA) and cluster analysis. Controlled grazing management significantly modified some soil characteristics and increased the production (352 versus 184.2 kg/ha) and vegetation cover percentage (25.46 versus 18.37), as compared to the exclusion area (α= 5%). The vegetation density was increased significantly in the exclusion rather than controlled grazing area (3.03 versus 2.02 plant/m2). This study, therefore, revealed that controlled grazing management was more effective on improving some soil quality and vegetation characteristics rather than p long term grazing exclusion in the semi-arid ecosystems. So, avoiding long term grazing exclusion in semi-arid rangelands is suggested.
M. Habibian, S. Jafari, M. Sheklabadi,
Volume 23, Issue 1 (6-2019)
Abstract
Sugarcane is cultivated in the wide area in Khuzestan province. In these areas, irrigated sugarcane cultivation consumes more than 30,000 cubic meters per hectare annually. This research was carried out to determine the effect of sugarcane cultivation on the soil development process and forms of iron oxides. Different sugarcane fields with different utilization times were selected and soil physico-chemical properties and different Fe forms were measured. The results showed that with enhancing the utilization time, the total amount of total iron oxides (Fed) and crystalline iron oxides (Fed-Feo) was increased. The average value of the Fed from 6958 mg/kg in the fields with a medium utilization history was decreased to 4560 mg/kg in fields with a short utilization history. Similarly, the average amount of crystalline iron oxide from 5888.3 mg/kg in the fields with a long utilization history was decreased to 5003.9 mg/kg in the fields with a short utilization hostory. This increase reflected the effect of sugarcane cultivation on the soil development process in the cultivated fields. The amount of non-crystalline iron oxides (Feo) was decreased from 443.9 mg/kg from the soil surface to 273.8 mg/kg to the subsurface. This increase was related to the more organic matter and the microbial activity in the surface soil. The amount of active iron (Feo/Fed) was dropped in all fields after the cultivation. Also, this ratio was dropped from 0.055 in the fields with a long cultivation history to 0.064 in the fields with a short utilized field. The results, therefore, showed that the increase of crystalline iron oxides was due to sugarcane and its heavy irrigation.
H. Karimi Avargani, A. Rahimikhoob, M. H. Nazarifar,
Volume 23, Issue 3 (12-2019)
Abstract
In recent years, a lot of research has been done on the Aquacrop model, the results show that this model simulates the product performance for deficit irrigation conditions. But this model, like other models, is sensitive to values of independent variables (model inputs). In this research, the sensitivity of the Aquacrop model was analyzed for 4 input parameters of reference evapotranspiration, normalized water productivity, initial canopy cover percentage and maximum canopy cover for barley. Irrigation treatments included full irrigation and two deficit irrigation treatments of 80% and 60%, the experiment was done in 2014-15 growing season in the field of Abourihan College. The values of measured biomass were used as the base values for treatments. The Beven’s method (Beven et al., 1979) was used for sensitivity analysis of Aquacrop model. The results showed that the model is most sensitive to the reference crop evapotranspiration, So the sensitivity coefficient for this parameter for full irrigation treatments, 80% full irrigation and 60% full irrigation were -1.1, -1.2 and -2.3 respectively. The negative sign indicates that if the value of reference evapotranspiration input is exceeded the actual value into the model, Yield performance is simulated less than actual value. In the meantime, the higher the degree of deficit irrigation, the greater the sensitivity of the model.
S. Barkhordari, M. Hashemy Shahdany, A. Bagherzadeh Khalkhali,
Volume 23, Issue 3 (12-2019)
Abstract
Seepage losses and poor operational activities are the two main source of water losses throughout the agricultural water conveyance and distribution systems in irrigation districts. This study aims to investigate the performances of two strategies of “canal lining” and employing the “Canal Automation” in order to reduce the losses mentioned above. The investigation was carried out on a couple of main canal reaches of Moghan Irrigation Districts. Two numerical models were simulated by Seep/w software to compare the seepage rate between the canal with and without concrete lining. The results reveal that the ability of concrete lining to reduce seepage losses along the canal is about 10%. Performance assessment of the “Canal Automation” strategy to minimize operational losses within the main canal was carried out employing Model Predictive Control (MPC). The results of the latter strategy indicate that employing the MPC not only reduces the operational losses along the canal by 15% but also improves the operation of the main canal so that the minimum efficiency and adequacy performance indicator was obtained 100% and 83% respectively. Therefore; due to Executive considerations and financial constraints in the same cases, the potential of each of the two strategies can be considered to reduce the conveyance and distribution losses and ultimately choose the most suitable option.
S. Nikkhoo Amiri, M. Khoshravesh, R. Norooz Valashedi,
Volume 23, Issue 4 (12-2019)
Abstract
Today, the rising surface temperature of the planet and its effects on the water cycle have attracted the attention of many researchers. The aim of this study was to investigate the effect of climate change on the Tajan (the upstream of Shahid Rajaei dam) catchment area. In order to study the output of CanESM2 model, the SDSM method was used to estimate the magnitude of the data. Flow discharge changes in Shahid Rajaei Dam were simulated using the weather data of Kiasar synoptic station and the temperature and precipitation changes were simulated using the climate scenarios of RCP2.6 and RCP8.5 for the 2016-2066 period. Also, the effect of different scenarios on the outflow of the Soleiman Tangeh hydrometric station was evaluated by SWAT hydrologic model. The results showed that the annual precipitation would be decreased by 58% and the air temperature would be increased by 14% under RCP2.6 scenario. Also, in the RCP8.5 scenario, precipitation would be decreased by 59.5% and the temperature would be increased by 21%. Peak discharge for RCP2.6 and RCP8.5 scenarios would be increased by 4% and 5.7%, respectively, and the average annual discharge might be decreased by 16% and 16.5% in the future period (2016-2066). Therefore, it can be planned by the investigation of conditions for cropping patterns in the downstream to consider the environmental impacts for future periods.
H. Shabani, M. A. Delavar, S. T. Fardood,
Volume 24, Issue 1 (5-2020)
Abstract
Today, to reduce the risks of contaminants, new remediation techniques have been focused on low-cost and environmentally friendly manners. Given the frequency of access, inexpensiveness and good physical and chemical properties, biochar has a high potential for the remediation of water pollutants. In this paper, the efficiency of chitosan engineered biochar (Bc-Ch) and pristine biochar (Bg-Bc) prepared from sugarcane bagasse biomass (Bg) in the Cd2+ removal in aqueous solution was investigated. To this aim, the effects of contact time, adsorbent dosage and solution pH on cadmium removal were evaluated by adsorption isotherms and Kinetic models. The results indicated that the Langmuir isotherm and the pseudo-second-order kinetic model could be well fitted with the process of cadmium biosorption. The maximum adsorption capacities of Bc-Ch, Bg-Bc and Bg ,according to Langmuir model, were found to be 32/78 mg/g, 11/57 mg/g and 2/23 mg/g, respectively. For these absorbents, the pseudo-second-order kinetic model showed the best fit to the experimental adsorption data. This study, therefore, indicated that the chitosan engineered biochar could be used as an effective, low-cost, and environmentally-friendly sorbent to remediate heavy metals contamination in the environment.
N. Abbasi, A. Heydari Pakroo, R. Bahramloo,
Volume 24, Issue 2 (7-2020)
Abstract
The use of additives to modify the physical, chemical and mechanical properties of soil and soil stabilization is one of the most common methods that have a history. By adding one or more additives to the soil and carrying out the required measures, the engineering properties of soils could be improved due to chemical reactions. Selecting the type and amount of additive depends on several factors such as: soil type, stabilization purpose, additives inherent characteristics, etc.; these are determined based on the technical and economic aspects of the projects. In this study, the effects of the simultaneous use of three types of additives including lime, stone powder and polypropylene fibers on the unconfined compressive strength of a clayey soil were investigated. To do this, four different levels of lime (0, 2, 3 and 5 percent by weight of soil) and four different levels of stone powder waste (0, 2, 5 and 10 percent by weight of soil) and Polypropylene fibers with different percentages in five levels of 0, 0.25, 0.5 and 1 percent by weight of soil were added into a high plastic clay soil classified as CH. Then, some physical and mechanical characteristics of different mixtures including plasticity, compaction and unconfined compressive strength were determined. The results showed that the samples were stabilized with lime and stone powder waste and reinforcement them with polypropylene fibers modified Atterberg Limits, optimum moisture and maximum dry density of the mixtures. Also, it was found that a combination of waste stone powder, lime and polypropylene fibers containing 5, 5 and 1 percent by weight of soil increased the unconfined compressive strength 8-fold, as compared to the natural soil. The curing time also had a significant impact on the compressive strength of the treated samples in which the 28-day compressive strength of was found to be about 2 times of the 7-day samples.
A. Kaghazchi, S. M. Hashemy Shahdany, A. Roozbahany, M. E. Banihabib,
Volume 24, Issue 3 (11-2020)
Abstract
The main purpose of the study is the operational simulation of main irrigation canal and evaluation of water delivery and distribution locally, regionally and overall using adequacy, efficiency, and equity indicators and “Desirability of water delivery and distribution” indicator. To achieve this goal, the hydrodynamic model of Roodasht irrigation network’s main canal was developed. The results of the calibration and validation of the hydrodynamic model showed that the two processes were satisfactory. All available scenarios including normal, water shortages and fluctuations were considered for water delivery and distribution in different conditions. In the local assessment, the adequacy varied from 7 to 85%, and the efficiency in all scenarios was 100%. The adequacy, efficiency, and equity indicators in the regional evaluation varied from 6 to 89, 91 to 100, and 13 to 46%, respectively. The overall evaluation of the canal showed that the most desirable situation is related to a harsh fluctuation increasing with the adequacy, equity and efficiency indicators equal to 82, 23 and 91%, respectively. Calculation of the “Desirability of water delivery and distribution” indicator showed poor performance in all operational scenarios except harsh fluctuation scenario with 82% of which, the canal performance was estimated in fair level.
Z. Noori, M. A. Delavar, Y. Safari,
Volume 24, Issue 4 (2-2021)
Abstract
The present study was intended to improve the chemical properties of a saline-sodic soil using the individual application of alfalfa residue and two biochars produced from sugarcane bagasse and walnut shell, at the weighting ratio of 5%; their concomitant application with gypsum, aluminum sulfate and the mixture of these two chemical amendments was considered. The experiment was conducted in three replications using the factorial experiment in a completely randomized design. After four months of incubation, the soil samples were measured for their main chemical properties. The results showed that alfalfa residues were the most effective treatment to reduce the soil pH; so the concomitant application of this organic amendment with gypsum lowered the soil pH from 9.13 in the control (untreated soil) to 7.24. It was also observed that the addition of gypsum and/or aluminum sulfate to the soil led to the increase of the soil electrolyte concentration and consequently, the increase of soil electrical conductivity to three times greater than control, through an increase of ions, like calcium and sulfate in the soil solution. Increasing the soluble sodium concentration by replacing exchangeable sodium by other similar ions showed that the studied treatments enhanced the sodium adsorption ratio (SAR), which could be regulated by washing. Concomitant application of the walnut-shell biochar with gypsum had the most increasing effect on the soil SAR, enhancing it from 22.6 in the control to 54.3. Potassium was released from organic amendments, improving the soil general conditions; addition of chemical amendments elevated soil exchangeable potassium contents; however, the elevated soil available phosphorus contents were less influenced by chemical amendments application. As the conclusion, it seems that the positive impacts of the applied chemical and organic amendments would supplement each other; as a result, the concurrent use of both treatments not only improves the bad soil chemical properties, but also enhances the soil fertility.
M. Abedinzadeh, A. Bakhshandeh, Mr B. Andarziyan, Mr S. Jafari, M Moradi Telavat,
Volume 25, Issue 3 (12-2021)
Abstract
Iran is located in the dry belt of the earth and is predicted to face water stress in the next half-century. Currently, the area of sugarcane cultivation in Khuzestan is over 85,000 hectares and due to the high water needs of sugarcane and drought conditions, optimization of water consumption and irrigation management is necessary to continue production. Therefore, in this study, the values of soil moisture, canopy cover, biomass yield in five treatments and irrigation levels (start of irrigation at 40%, 50%, 60%, 70%, and 80% soil moisture discharge) during 2 planting dates in the crop year 2015-2016 on sugarcane cultivar CP69-1062 in Amirkabir sugarcane cultivation and industry located in the south of Khuzestan was simulated by AquaCrop model. The measured data on the first culture date (D1) and the second culture date (D2) were used to calibrate and validate the model. The results of NRMSE statistics in canopy cover simulation in calibration and validation sets with values of 2.1 to 15.6% and 3.8 to 18.3%, respectively, and in biomass simulation with values of 6.2 to 15.2%, and 9.5 to 12.6%, respectively and coefficient of determination (R2), range 0.98 to 0.99 indicated that the high ability of the AquaCrop model in simulation canopy cover and biomass yield. whereas, the values of NRMSE of soil depth moisture in the calibration and validation sets ranged from 11.6 to 23.8, and 12.2 to 22.7, respectively, with a coefficient of determination (R2), 0.73 to 0.96 (calibration) 0.8 to 0.93 (validation) showed less accuracy of the model in the simulation. The best scenario is related to the third proposal that water consumption, water use efficiency, and yield are 1710 mm, 1.53, and 42.27 tons per hectare, respectively, which shows a reduction in water consumption of 360 mm.
M.r. Bahadori, F. Razzaghi, A.r. Sepaskhah,
Volume 26, Issue 3 (12-2022)
Abstract
Inefficient use of limited water resources, along with increasing population and increasing water demand for food production has severely threatened agricultural water resources. One way to overcome this problem is to improve water productivity by introducing new crops that tolerate water stresses such as quinoa. In this study, the effect of water stress at different stages of plant growth (vegetative, flowering, and grain filling) was studied on plant parameters, yield, and water productivity of quinoa (cv. Titicaca). This study was conducted under field conditions and the treatments were performed as a block experiment in a completely randomized design with four replications. Experimental factors were: treatment without water stress or full irrigation (F) and water stress treatment (D) at 50% of the need for full irrigation at different stages of quinoa growth. The application of deficit irrigation during different stages of plant growth decreased stomatal conductance, leaf area index, leaf water potential, seed yield, and water productivity, while deficit irrigation increased the green canopy temperature. According to the results of the present study, the flowering stage of quinoa was very sensitive to water stress leading to produce lower yield compared with the amount of yield obtained when vegetative and or grain filling stages are under water stress conditions.
E. Masoumi, R. Ajalloeian, A.a. Nourbakhsh, M. Bayat,
Volume 26, Issue 3 (12-2022)
Abstract
Since clay is widely used in most construction projects, the issue of improving clay soils has considerable importance. This study aimed to optimize the variables affecting the properties of geopolymer and improve their mechanical properties using Isfahan blast furnace slag. Taguchi's statistical design method was used to model three process variables (blast furnace slag, water, and alkali sodium hydroxide agent) with four different values in the mixing design. Geopolymer was used to optimize the uniaxial compressive strength. Sixteen geopolymer compositions determined by mini-tab software were prepared and their uniaxial compressive strength was measured. The obtained results were modeled by analysis of variance, and then the interactions of the three variables on the uniaxial compressive strength of geopolymer were investigated using two and 3D diagrams. Then, the variables were optimized and the proposed values for the optimal sample were examined at temperatures of 25, 50, and 70°C and at times of 3, 7, 14, and 28 days of operation. A comparison of the results predicted by the models and the results of the experiments confirmed the validity of the models. Also, the scanning electron microscopy (SEM) images showed that the porosity will reduce from 7 to 28 days. It indicated that the use of the geopolymerization method has a significant role in stabilizing weak clay soils with low plasticity. The effect of fibers and geopolymer to reinforce was also investigated and for better evaluation, it was compared with soil stabilization with Portland cement. The results showed that in the most optimal geopolymer composition, the bearing resistance of clay has increased by more than 3400%. Meanwhile, fibers along with geopolymer with optimal percentage and length (0.1% by weight of geopolymer composition and length of 12 mm) were able to increase the uniaxial compressive strength of clay by nearly 4000%, which shows the excellent effect of using cellular fibers parameter whit the geopolymer in this research.
A. Nasseri,
Volume 27, Issue 2 (9-2023)
Abstract
The selection of precision value for Roughness coefficient (RC) is necessary to design and utilize earth canals due to the vast distribution of Echinocola crus-galli in earth canals. Therefore, the current study was conducted to evaluate roughness coefficients in earth canals with Echinocola crus-galli at the Moghan plain (in the North-west of Iran). In the network of Moghan, 42 canal sections were selected to measure vegetation density and wet weight, water flow velocity (with a flow meter), and canal cross sections (with profilimetery devices). The hydraulic characteristics were estimated after water depth measurements. The Manning roughness coefficient (n) was applied to estimate the roughness coefficient. Path analysis was applied to identify the factors affecting the roughness coefficient. Multivariate cluster analysis using Ward's method and squared Euclidean distance was applied to cluster factors affecting the roughness coefficient in canals. The results revealed that RC averaged 0.015. The path analysis showed that the wetted perimeter, crop biomass, flow cross-sectional area, flow velocity, and hydraulic radius had the highest total effect on the roughness coefficient, respectively. The factors clustering showed that two clusters were obtained in the Euclidean distance of 11. The first cluster included flow velocity, crop biomass, flow rate, and bed slope; and the second cluster included flow cross-sectional area, wetted perimeter, and hydraulic radius. The findings could be helpful for designing and operating canals in the studied or similar regions.
M. Naderi, V. Sheikh, A. Bahrehmand, C.b. Komaki, A. Ghangermeh,
Volume 27, Issue 4 (12-2023)
Abstract
Greenhouse gases and the occurrence of climate change have occurred with the development of technology and the industrialization of human societies. long-term forecasting of climate parameters has always been interesting due to the importance of climate change for the earth and its inhabitants. General Circulation Models (GCMs) are one of the most widely used methods for evaluating future climate conditions. In the present study, the results of three general circulation models including the American model of GFDL-CM3, the Canadian model of CanESM2, and the Russian model of inmcm4ncml for the study area were evaluated and the CanESM2 model was selected as the superior model. The RCP scenarios 2.6, 4.5, and RCP 8.5 were used with the CanESM2 model to assess climate change conditions across the Hablehroud River basin for the period 2020-2051. According to the results, the total monthly precipitation shows an increasing trend in the coming decades 2020-2051 period compared to the period 1986-2017. The results of the study of temperature changes in the period 2020-2051 in the Hablehroud River basin also indicate an increase in the monthly average of maximum and minimum temperatures in the coming decades. The consequences of these conditions are of great hydrological importance in the study area, this condition necessitates the adoption of climate change adaptation policies in this watershed.
A. Zare Garizi, K. Shahedi, A. Matboo,
Volume 28, Issue 1 (5-2024)
Abstract
Water quality characteristics play a crucial role in water resources management, watershed health assessment, and implementing effective management strategies. The objective of this research was to present an overall assessment of the surface water quality in the Gorganrood River Basin to be utilized for developing effective watershed management plans and programs. Various physicochemical water quality data including main anions and cations, Total Dissolved Solids (TDS), Electrical Conductivity (EC), Sodium Absorption Ratio (SAR), pH, and total hardness recorded at 25 hydrometric stations across the basin were analyzed and assessed with the Canadian (CCME) Water Quality Index. The mean water quality index for drinking, agriculture, and industrial purposes indicated that headwaters and higher areas generally exhibited better water quality compared to the downstream areas of the basin. Geochemical processes and the introduction of various pollutants during water flow from the headwaters to the basin outlet contribute to a decline in water quality. The highest water quality was observed in the Kabudval and Shirabad stations, whereas the Baghesalian station exhibited the lowest. For drinking water use, hardness, bicarbonate, and chloride were identified as variables contributing to water quality decline in the headwaters and upstream areas. However, these areas predominantly maintained a moderate to good quality for drinking purposes. Conversely, downstream areas experienced a significant deterioration in water quality with higher pollutant levels such as total dissolved solids (TDS), sulfate, and sodium, resulting in relatively poor to poor conditions. Approximately 60% of the stations in the basin had excellent water quality for agricultural use, with no limiting factors. Only three stations near the basin's outlet exhibited relatively poor to poor water quality due to elevated chloride levels, sodium adsorption ratio (SAR), and electrical conductivity. only 28% of hydrometric stations demonstrated good water quality for industrial use. Hardness, pH, and TDS are the main variables contributing to water quality decline for industrial use in the upstream, while downstream areas are impacted by chloride and sulfate. The outcomes of this study hold significant implications for effective water resources management, watershed preservation, and natural resource conservation in the Gorganrood basin. From industry and especially health aspects, however, more detailed investigations are needed, taking into account some other important variables of water quality (including nitrate, total coliform, fecal coliform, etc.).