Showing 2384 results for Type of Study: Research
M.h. Rahimian, J. Abedi Koupaei,
Volume 25, Issue 3 (12-2021)
Abstract
Soil salinization is a phenomenon that threatens agricultural lands and natural areas, leading to reduced productivity, declinations of soil resources and vegetation covers, and finally, the abandonment of these areas. This study has quantified the groundwater Capillary Rise (CR) and actual Evapotranspiration (ETa) and their relationship with the soil salinity of Azadegan plain, west of Khuzestan Province. The study area has an arid climate, characterized by shallow and saline water table and a high potential evaporation rate. For this purpose, field samplings were carried out in four consecutive seasons of the year to measure salinity, soil moisture, and texture, groundwater table, and salinity at 27 scattered representative points of the study area. The CR values were estimated in different seasons of the year using UPFLOW model. Moreover, four representative Landsat satellite images were acquired to map seasonal changes of ETa through the SEBAL algorithm. Then, the effects of ETa on CR and consequent soil salinity build up were quantified in a seasonal time scale. The results showed that the average daily ETa of Azadegan plain varied from 1.55 to 7.96 mm day-1 in different seasons which caused a capillary rise of around 1.2 to 1.5 mm.day-1. This has led to the upward movement of 12 to 18.8 ton ha-1 month-1 of salts from shallow groundwater to the soil surface, which has caused surface soil salinization. Also, there was a close relationship between ETa, CR, and soil salinity parameters, which can provide insight into modeling of spatial and temporal changes of soil salinity and provision of solutions to reduce the accumulation of solutes in the soils of the study area.
M. Pajouhesh, H. Shekohideh, Z. Heydari,
Volume 25, Issue 3 (12-2021)
Abstract
Land use changes identifying to assess and monitor sensitive areas for sustainable planning and land management is essential. Remote sensing and the use of GIS technology as some of the most common methods in the world in monitoring land changes, especially, in the study of large areas. In this study, the trend of spatial land use changes in the area of Karun 3 dam was investigated. in the before and after the construction periods and dam intake using remote sensing and GIS over 27 years. In this study, the satellite imagery of Landsat 5 TM sensors from 1991 and 2008 and Landsat 8 OLI sensors in 2018 were analyzed and processed. Using object-oriented classification with land use maps for the three periods 1991, 2008, and 2018 with the overall accuracy of the Kappa index of 0.93 and 0.89 percent for 1991, 0.94, and 0.88 percent in 2008 and 0.93, respectively, and 0.86% in 2018 was prepared. The results showed that the water use of the region with an area of 37.68 square kilometers is increasing and agricultural lands and residential areas with an area of 1349.04 and 226.56, respectively, forest lands with an area of 1041.49 remained as the dominant cover of the region and rangelands by going through a decreasing trend of increase in both periods after forest use, with an area of 878.87, they had the largest area. According to the obtained results, it can be said that the construction of the Karun 3 dam has caused the flooding of agricultural lands and their conversion to another use, as a result of which the villagers were forced to migrate due to losing their jobs and abandoned residential areas become other uses.
M. Sayadi, H. Khosravi, S. Zareh, Kh. Ahmadali, S. Bagheri,
Volume 25, Issue 3 (12-2021)
Abstract
Desertification is a phenomenon that has more destructive effects in arid, semi-arid, and semi-humid regions than in other regions. This paper tries to provide a map of the future of desertification in Tehran Province, for futurism in the face of land degradation and desertification. The IMDPA model was used to evaluate land degradation and desertification. To use this model and evaluate desertification, three criteria of groundwater including groundwater depletion, electrical conductivity, and sodium adsorption ratio indices, climate criterion including precipitation, aridity, and drought indices, and land use criteria were selected as key criteria effected on desertification according to regional conditions. Land use index map with IGBP standard and zoning map of other indicators were prepared by IDW method for 2011 and 2016. The maps of land use index and other indices were predicted using the CA-Markov model in TerrSet software, and using the RBF method in artificial neural network toolbox, respectively. Scoring based on the IMDPA model, the maps of indices and criteria maps were prepared for 2011, 2016, and 2021. Finally, the desertification intensity map was calculated by geometric averaging for all three criteria for all three time periods. The results showed that 59.78% and 40.22% of the area of Tehran Province were in the low and medium classes, respectively. However, in 2016, the area of the medium class has increased to a 44.8%, and it is predicted that this increase will continue until 2021 so that 47.65% of the area of Tehran Province will be in the medium class. In addition, in this year, about 1% of the area of Tehran Province will be allocated to the high class in the western regions, which did not exist in the previous two periods. In general, due to human activities, the intensity of desertification in the western and southern parts of the province is higher than in the eastern and northern regions.
R. Jafari, H. Sanati,
Volume 25, Issue 3 (12-2021)
Abstract
The southern regions of Kerman Province have repeatedly encountered dust storms. Therefore, the objective of this study was to identify dust sources using effective parameters such as vegetation cover, land surface temperature, soil moisture, soil texture, and slope as well as to detect dust storms originating from these regions based on 31 MODIS images in 2016 and SRTM data. After normalizing parameters, the dust source map was prepared by fuzzy logic and assessed with an error matrix and available dust source map. Results showed that 30.5% of the study area was classified as a low source of dust, 39.55% as moderate, and 29.85% as severe-very severe. The overall accuracy of the produced map was about 70% and the producer and user accuracy of the severe-very severe class was more than 87%. The detection of dust storms originated from the identified dust sources also confirmed a crisis situation in the region. Due to the repeatability and continuity of obtained dust source map at pixel scale, it can be used to update available dust source maps and manage dust crisis in the region, properly.
M. Ghodspour, M. Sarai Tabrizi, A. Saremi, H. Kardan Moghadam, M. Akbari,
Volume 25, Issue 3 (12-2021)
Abstract
The application of simulation-optimization models is a valuable tool for selecting the appropriate cropping pattern. The main objective of this research is to develop a two-objective simulation-optimization model to determine the pattern of cultivation and water allocation. The model performs the optimization with the multi-objective metamorphic algorithm (MOALO) after simulating different states of the cultivation pattern. The decision variables including land and water allocated to ten-day periods of plant growth were designed in a way that the minimum utilization of water resources and economic maximization were identified as target functions. The developed model was used to simulate and optimize the cultivation pattern with an area of 5500 hectares and water allocation of Semnan plain with renewable water at the rate of 60.8 million cubic meters. Harvesting scenarios of 80 (GW80) and 100 (GW100) percent of renewable groundwater and scenarios of change in existing cropping pattern of 30 (AC30) and 60 (AC60) percent were considered and each scenario was simulated with the MOALO algorithm. Optimization using the proposed model in four scenarios improved the water and economic objective functions compared to the initial simulation performance. The results showed that the four proposed scenarios were obtained by minimizing the water objective function and maximizing the economic objective function relative to the current situation (simulation). In general, the proposed model had a good performance despite its simplicity, which is a specialized tool to optimize the crop pattern with water allocation.
M. Abedinzadeh, A. Bakhshandeh, Mr B. Andarziyan, Mr S. Jafari, M Moradi Telavat,
Volume 25, Issue 3 (12-2021)
Abstract
Iran is located in the dry belt of the earth and is predicted to face water stress in the next half-century. Currently, the area of sugarcane cultivation in Khuzestan is over 85,000 hectares and due to the high water needs of sugarcane and drought conditions, optimization of water consumption and irrigation management is necessary to continue production. Therefore, in this study, the values of soil moisture, canopy cover, biomass yield in five treatments and irrigation levels (start of irrigation at 40%, 50%, 60%, 70%, and 80% soil moisture discharge) during 2 planting dates in the crop year 2015-2016 on sugarcane cultivar CP69-1062 in Amirkabir sugarcane cultivation and industry located in the south of Khuzestan was simulated by AquaCrop model. The measured data on the first culture date (D1) and the second culture date (D2) were used to calibrate and validate the model. The results of NRMSE statistics in canopy cover simulation in calibration and validation sets with values of 2.1 to 15.6% and 3.8 to 18.3%, respectively, and in biomass simulation with values of 6.2 to 15.2%, and 9.5 to 12.6%, respectively and coefficient of determination (R2), range 0.98 to 0.99 indicated that the high ability of the AquaCrop model in simulation canopy cover and biomass yield. whereas, the values of NRMSE of soil depth moisture in the calibration and validation sets ranged from 11.6 to 23.8, and 12.2 to 22.7, respectively, with a coefficient of determination (R2), 0.73 to 0.96 (calibration) 0.8 to 0.93 (validation) showed less accuracy of the model in the simulation. The best scenario is related to the third proposal that water consumption, water use efficiency, and yield are 1710 mm, 1.53, and 42.27 tons per hectare, respectively, which shows a reduction in water consumption of 360 mm.
M. Pakmanesh, H. Mousavi Jahromi, A. Khosrojerdi, H. Hassanpour Darvishi, Hossein Babazadeh,
Volume 25, Issue 3 (12-2021)
Abstract
The present study is investigated the earth dam stability during drawdown based on both numerical and experimental aspects. To validate the numerical model, a model was performed experimentally. Some soil mechanic tests were carried out through the hydraulic experiments to attain the usage factors of the numerical investigation. To investigate the effect of hydraulic conductivity on the rapid drop of water level and the use of hydraulic parameters of materials, seepage flow in the model was modeled by seep/w software. The input information to the software including hydraulic conductivity and water volume were measured by performing a constant load test and using a disc penetration meter, respectively. After validation of hydraulic conductivity with the experimental model, the results were compared with observed data. Comparison between numerical and laboratory discharge illustrated that the numerical model with laboratory model is well confirmed. In addition, saturated and unsaturated simulations demonstrated that the unsaturated model is highly consistent with the experimental model. It is assumed that due to the drawdown conditions, unsaturated models can achieve high accuracy for simulating the flow through a homogeneous earth dam.
Z. Savari, S. Hojati, R. Taghizadeh Mehrjerdi,
Volume 25, Issue 3 (12-2021)
Abstract
Soil salinity and its development are the main problems that should be prevented by correct management methods. Recognition of saline districts and the preparation of salinity maps are the first steps in this way. Nowadays, the application of auxiliary data in digital soil mapping is increasing due to the current associated problems in the preparation of traditional maps. The objectives of this study were to map soil salinity by the Regression Kriging (RK) method, to identify areas with high salinity, and to investigate the relationship between soil salinity and soil-forming factors in Khuzestan Province. For this purpose, 291 surface soil samples (0-10 cm) were randomly collected in April 2014. Auxiliary variables or soil-forming factors were included in the land parameters such as slope, watershed and wetness index, OLI and TIRS images of Landsat 8, and the category maps (soil, land use, and geological maps). Also, kriging approaches were used to compare the precision of different mapping methods. The results indicated that the Regression Kriging method has a higher precision compared with other methods so that the coefficient of determination, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) were estimated as 0.84, 0.41, and 6.21, respectively. The Decision Tree Regression method could also create a good relationship between soil salinity and auxiliary variables. The results showed that some auxiliary variables were more effective on the prediction of soil salinity including 2, 4, 5, and 7 bands of Landsat 8, Brightness Index, Wetness Index, Multiresolution index of Valley Bottom Flatness (MrVBF), Channel Network Base Level (CNBL), NDVI, SAVI and soil map. A Digital map of soil salinity was prepared by the obtained rules, and then it was assimilated with the map of error of variance to prepare the final soil salinity map. Accordingly, soil salinity was found to have an increasing trend from north to south in Khuzestan Province which indicates a salinity problem in the south of the Province. The main reasons for the high salinity in the south and southwestern parts of the area could be attributed to the high water table levels, differences in topography, capillary movement of salt to the soil surface, the difference in the type of land uses, and also groundwater quality and irrigation water which is altered by the frequent application of wastewaters and animal manures.
A. Norouzi, M.r. Ansari,
Volume 25, Issue 3 (12-2021)
Abstract
At present, the occurrence of dust storms is one of the most important environmental problems in Khuzestan Province, and the south and southeast regions of Ahwaz have been recognized as one of the interior dust sources and are the priority of corrective operations. Given that land use change is one of the desertification factors in the mentioned region, therefore, modeling its changes is necessary and provides useful information for planners to control and revive the degraded lands. The objective of this study was to evaluate the efficiency of the CA-Markov model in predicting land use changes in the dust source of south and southeast of Ahwaz based on two long-term and short-term approaches. In the long-term approach, land use maps of 1986 and 2002 years and in the short-term approach, land use maps of 2002 and 2007 years have been used to predict land use for the year 2016 and then the simulation results were validated. The results showed that the values of allocation error, quantity error, and kappa coefficient for the long-term approach were 42.55%, 13.95%, and 0.08 respectively, and for the short-term approach were 12.56%, 10.42%, and 0.22 respectively, which indicates the weak ability of the CA-Markov model to evaluate the desertification trend in the dust Source of south and southeast Ahwaz. Use of uniform transition rule throughout the simulation period without considering the factors and processes affecting land use change, the non-same trend of land use change during study periods, changes due to human activities, drought, and long forecast period can be the reasons for the poor performance of the CA-Markov model to predict the desertification trend the dust Source of south and southeast Ahwaz.
M.m. Matinzadeh, J. Abedi Koupai, M. Shayannejad, A. Sadeghi-Lari , H. Nozari,
Volume 25, Issue 4 (3-2022)
Abstract
Using water and fertilizer management at the farm level can be increased water use efficiency and reduce the volume of drainage water, fertilizer losses, and other pollutants in farmland with deep underground drains such as Khuzestan agro-industrial Companies. In the present study, a comprehensive simulation model for the water cycle and the nitrogen dynamics modeling was used for water and fertilizer management modeling on farmland of sugarcane in Imam Agro-Industrial Company using a system dynamics approach. To reduce irrigation water consumption and nitrogen fertilizer losses, five different scenarios were considered including four scenarios of water management consist of 5, 10, 15, and 20 percent reduction in the amount of irrigation water (I1, I2, I3, and I4) compared to the current situation of irrigation in Imam agro-industrial Company (I0), and one scenario of integrated water and fertilizer management (20% reduction in the amount of irrigation water and urea fertilizer 210 Kg/ha, I4F). The results of modeling showed that the scenario of I4F caused to reduce 31, 70, 71, 70, and 85 percent of the cumulative volume of drainage water, cumulative nitrate and ammonium losses, total losses of cumulative nitrate, and ammonium by tile-drain and cumulative losses of denitrification process, respectively. Thus, the implementation of this scenario, not only saves water and fertilizer consumption but also reduces environmental pollution effectively. So the scenario of I4F (amount of irrigation water for six months 2656 mm and urea fertilizer 210 Kg/ha) is recommended for sugarcane in the Imam agro-industrial Company.
A.r. Vaezi, E. Mohammadi,
Volume 25, Issue 4 (3-2022)
Abstract
This study was conducted to investigate the temporal variations of runoff and rill erosion in various soil textures under different slope gradients. So, a laboratory experiment was set up in three soil textures (loam, clay loam, and sandy clay loam) and four slope gradients (5, 10, 15, and 20%) using the completely randomized design with three replications. Runoff production and rill erosion were measured at a flume with 4 m×0.32 m in dimensions using a simulated water flow with 0.5 lit min-1 in discharge during 30 min. Results indicated that runoff and rill erosion and their interaction were significantly affected by soil texture and slope gradient (P < 0.001). Significant relations were found between rill erosion and runoff both in three soils and four slope gradients, and the strongest relations were in loam (R2= 0.86) and 15% slope gradient (R2= 0.94). Runoff and rill erosion varied considerably in the soil textures and slope gradients during the experiment. A 10-min pick time was found for runoff and rill erosion. In contrast to runoff, rill erosion appeared an irregular and gradual increasing pattern during the experiment which was associated with the frequency of transportable soil particles. Clay loam had more sensitive particles due to a higher percentage of fine particles and weaker structure, and most of them were washed in early times, and finally, rill erosion was reached to a constant pattern. This study revealed that temporal variation patterns of runoff and rill erosion are influenced by soil type (texture and structure) and slope gradient.
F. Ghasemi-Saadat Abadi, S. Zand-Parsa, M. Mahbod,
Volume 25, Issue 4 (3-2022)
Abstract
In arid and semi-arid regions, water resource management and optimization of applying irrigation water are particularly important. For optimization of applying irrigation water, the estimated values of actual evapotranspiration are necessary for avoiding excessive or inadequate applying water. The estimation of actual crop evapotranspiration is not possible in large areas using the traditional methods. Hence, it is recommended to use remote sensing algorithms for these areas. In this research, actual evapotranspiration of wheat fields was estimated using METRIC algorithm (Mapping EvapoTranspiration at high Resolution with Internalized Calibration), using ground-based meteorological data and satellite images of Landsat8 at the Faculty of Agriculture, Shiraz University, in 2016-2018. In the process of METRIC execution, cold pixels are located in well-irrigated wheat fields where there is no water stress and maximum crop evapotranspiration occurred. The estimated maximum values of evapotranspiration using the METRIC algorithm were validated favorably using the obtained values by the AquaCrop model with NRMSE (Normalized Root Mean Square Errors) equal to 0.12. Finally, the values of water productivity (grain yield per unit volume of evapotranspiration) and irrigation efficiency were estimated using the values of predicted actual evapotranspiration using remote sensing technique. The values of measured irrigation water and produced wheat grain yield in 179 ha were estimated at 0.86 kg m-3 and 75%, respectively.
M. Motavallizadeh Naeini, R. Modarres,
Volume 25, Issue 4 (3-2022)
Abstract
Dust storms in arid and semi-arid regions have harmful impacts on the environment, the economy, and the health of local and global communities. In this study, the frequency of annual dust events in twenty-five stations and five climatic variables including rainfall, maximum annual wind speed, average annual wind speed, maximum annual temperature, and average annual temperature in arid regions of Iran up to 2014 were used to show the effects of climatic change on dust storms. Annual correlation coefficient time series between climatic variables and dust storms were first calculated based on monthly observations. Then, the trend in climatic variables, dust storm frequency, and their correlation were assessed using the Mann-Kendal method. Results indicated that the correlation coefficients had fluctuations in time and are both significant and insignificant in different years that reach from 0.6 to 0.9 for wind speed and temperature and -0.2 to -0.6 for precipitation. This trend in correlation has the same direction with climatic variables and shows co-movement between climatic change and dust storm fluctuations in central Iran. Results also showed that wind speed and temperature have a high impact on dust storm fluctuations and rainfall reduction has an increasing effect on dust storms.
R. Sadeghi Talarposhti, R K. Ebrahimi, A. Horfar,
Volume 25, Issue 4 (3-2022)
Abstract
Protection of rivers’ water quality as the most accessible source of the water supply has always been considered. In this paper, self-purification and the pollution decay coefficient values of Talar River, IRAN were studied based on field measurement of DO, BOD, pH, EC, Nitrate, Phosphate, and Temperature, in four seasons of the year 2018, in tandem with the river simulation and its calibration using QUAL2Kw model and the Streeter-Phelps method. In addition to the modeling and analysis results, the measured laboratory data values of the river water samples are also presented. Based on the results, the DO variations were ranged from 5.15 in summer to 7.47 mg/l in spring and BOD variations ranged from 1.88 in fall to 7.9 mg/l in summer. Also, according to the Streeter-Phelps method the decay coefficient values varied from 1.57 (1/day) in spring to 9.63 (1/day) in fall. The values of the Talar River decay coefficient also varied from 2 in fall to 7.7 (1/day) in summer involving the QUAL2Kw model.
A.r. Tavakoli, H. Hokmabadi, A. Naderi Arefi, A. Hajji,
Volume 25, Issue 4 (3-2022)
Abstract
Due to limited access to water, it is necessary to determine the comparative advantage of crops and horticultural products in different parts of the province and identify products that lack the desired productivity. Then, find ways to improve water productivity or replace products with higher comparative advantage with low-yield products. Based on this, the crop and economic productivity index of the province's agricultural and horticultural products under surface irrigation systems was determined. Based on the results of gross economic productivity of horticultural products, pistachio with 48690 Rials per cubic meter had the highest economic productivity, and grapes with 30220 Rials per cubic meter (62% of pistachios) was in second place. In addition, water quality for pistachios can never be generalized for grapes and other crops, and this is a tremendous advantage for pistachios that low-quality water resources can also be used. The lowest gross economic productivity of water for barley, alfalfa, and wheat is equal to 3790, 3990, and 4570 Rials per cubic meter, respectively. The study of fodder corn shows that the net profit from the cultivation of this crop in the surface irrigation system is equal to 51.78 million Rials per hectare and its net profit in the strip drip irrigation system (tape) is equal to 110.87 million Rials, which it has a 2.14-fold increase compared to the conventional irrigation method. The comparative advantage of horticultural products was higher than that of crops, and the replacement and development of orchards instead of some crops is recommended as a solution. In addition, solutions that can be recommended to improve the productivity index include the use of a drip irrigation system (tape) for crops (fodder corn, tomatoes, summer crops, and potatoes) and the use of drip irrigation (normal, subsurface, and subsurface modified drip) for horticultural products. Examination of practical experiences of using tape irrigation system for wheat and barley showed that this method has not improved the agricultural and economic productivity index, which indicates the lack of comparative advantage of wheat and barley cultivation in Semnan Province even with tape irrigation system.
A. Mehrabi, M. Heidar Pour, H. R. Safavi,
Volume 25, Issue 4 (3-2022)
Abstract
Designing an optimal crop pattern and on-time water allocation of water resources along with deficit irrigation are among the optimal solutions to maximize the water economic efficiency index. In this paper, the simultaneous optimization of crop pattern and water allocation are discussed using the deficit irrigation method. The study area is located west of the Qazvin plain irrigation network. The six different levels of percentage reduction of irrigation rate (0, 0 to 10, 0 to 20, 0 to 30, 0 to 40, and 0 to 50%) in three climatic conditions consist of dry, normal, and wet years were compared. The best irrigation scenario was selected for each year, and the results were compared with the existing crop pattern of the same year. The new crop pattern included the main crops of the region and the addition of rapeseed. The objective was to reach the maximum net benefit per unit volume of water by considering the maximum extraction of monthly and annual surface and groundwater. The results showed that the best scenario in the dry year was maximum deficit irrigation up to 20%, in a normal year full irrigation, and a wet year maximum deficit irrigation up to 10%. The improvement of economic water productivity in a dry year was 52.2%, in a normal year 41.5%, and in a wet year is 19.6% compared to the existing crop pattern. The average percentage of annual irrigation supply increases from 64.3 to 91.7% in a dry year, from 70 to 100% in a normal year, and from 77.5 to 97.1% in a wet year. Also, the relative yield of all crops, especially wheat, alfalfa, and sugar beet significantly increases. Therefore, the gravitational search algorithm as an optimization model can be considered in selecting the suitable crop pattern and allocation of surface and groundwater resources concerning economic benefits in irrigation networks management.
S. Toghiani Khorasgani, S. Eslamian, M.j Zareian,
Volume 25, Issue 4 (3-2022)
Abstract
In recent decades, water scarcity has become a global problem due to the growth of the world's population as well as the increase in per capita water consumption. Therefore, planning and managing water resources to prevent potential risks such as floods and drought in the future is one of the important measures of water resources management. One of the important measures to avoid potential risks and predict the future is rainfall-runoff modeling. The objective of this study was to investigate the efficiency of the WetSpa hydrological model in estimating surface runoff in the Eskandari watershed, which is one of the important sub-basins of the Zayandehrood watershed. In this study, Daran and Fereydunshahr synoptic stations have been used to collect meteorological information in the Eskandari watershed. Also, to study the flow of the Plasjan river, daily data of Eskandari hydrometric station, located at the outlet of the basin, have been used. Climatic data along with digital maps of altitude, soil texture, and land use were entered as input to the WetSpa model. Finally, the ability of the WetSpa model was evaluated in estimating river surface runoff. The observed flow at the basin outlet in the hydrometric station was used to evaluate and calibrate the model. The model was calibrated for the statistical period (1992-2000) and its validation was performed for the statistical period (2001-2004). In the calibration period, the trial and error method were used to calibrate the model parameters. The simulation results showed a good correlation between the simulated flow and the measured flow. In the present study, the Nash Sutcliffe coefficient in the calibration and validation stages was equal to 0.73 and 0.75, respectively which shows the good and acceptable ability of the model in estimating the surface runoff of the study basin.
H. Alipour, A. Jalalian, N. Honarjoo, N. Toomanian, F. Sarmadian,
Volume 25, Issue 4 (3-2022)
Abstract
Dust is one of the environmental hazards in arid and semi-arid regions of the world. In some areas, under the influence of human activities, dust is contaminated by heavy metals. In this study, the dust of 10 stations in the Kuhdasht region of Lorestan province in four seasons of spring, summer, autumn, and winter, as well as adjacent surface soils (a total of 40 dust samples and 10 surface soil samples), were sampled and some heavy metals including Zn, Pb, Cd, Ni, Cu, and Mn were analyzed. The results revealed that the amount of Zn in the dust was much higher than the surface soils of the region (800 vs. 85 mg/kg). Contamination factor index calculation indicated that high contamination of Cd and Zn, significant contamination of Ni and Pb, and lack of contamination by Cu and Mn. The annual enrichment factor of Cd (33.9) and Zn (24.6) was very high, Ni (11.3) was significant, Pb (6.4) was moderate, Mn (1) and Cu (0.82) were low. Based on the enrichment factor values, Cd, Zn, and Ni seem to have a human origin, Pb has both human activities and natural origin, and Cu and Mn have an only natural origin.
H. Elahifar, O. Tayari, N. Yazdanpanah, M. Momeni,
Volume 25, Issue 4 (3-2022)
Abstract
The discharge coefficient of labyrinth weirs increases with increasing the crest length in a certain width range. The present research was carried out in a laboratory flume with a length of 8 m, a width of 0.6 m, and a height of 0.6 m. The discharge coefficient of two-cycle symmetric and asymmetric rectangular labyrinth weirs was experimentally measured. The dimensional analysis by the Buckingham π theorem indicated that the discharge coefficient was dependent on Se, B/Wavg, Ht/P, and WL/WR. According to the results, the discharge coefficient decreased with increasing the hydraulic head in the symmetric and asymmetric labyrinth weirs and the linear weir. Asymmetric labyrinth weirs with a WL/WR of 2.05 outperformed symmetric labyrinth weirs with a WL/WR of 1. Quantitatively, the discharge coefficient of the labyrinth weir with a B/Wavg of 3.1 was respectively 21% and 94% higher than that with a B/Wavg of 2.93 and 2.76. The discharge coefficient of the labyrinth weir with a WL/WR of 2.05 was 10-27% higher than that with a WL/WR of 1. The discharge coefficient of the linear weir was 60-250% higher than that of labyrinth weirs.
F. Sadeghdoust, N. Ghanavati, A. Nazarpour,
Volume 25, Issue 4 (3-2022)
Abstract
Street dust is mainly affected by the pollution of polycyclic aromatic hydrocarbons (PAHs). PAHs are a group of organic pollutants consisting of two or more benzene rings and are mainly produced during incomplete combustion. PAHs have attracted widespread attention due to their high carcinogenic and mutagenic properties in humans. Therefore, the purpose of this study was to investigate the sources and extent of the impact of these compounds on human health and the environment. To achieve this goal, 30 dust samples were collected from the sidewalks of the main streets of Dezful and the concentration of PAHs was determined by gas chromatography-mass spectrometry (GC-MS). The total concentration of PAHs in street dust of Dezful varied from 562.85 to 51447.10 μg / kg. The ratio of carcinogenic compounds to total PAHs was in the range between 0.73 to 0.91. Low molecular weight and high molecular weight PAHs accounted for 12% and 88% of total PAHs, respectively. The most important sources of PAHs in Dezful are the combustion of fossil fuels and petroleum products and emissions from vehicles and traffic. Moreover, incremental lifetime cancer risk (ILCR) in pathways ingestion in children was higher than in adults, but the ILCR in pathways dermal contact and inhalation in adults was higher than in children. The total cancer risk (CR) for children (5.77×10-3) was higher than adults (5.56×10-3), which shows the high potential for CR in the study area.