Showing 2384 results for Type of Study: Research
F. Fathian, M. Ghadami, Z. Dehghan,
Volume 26, Issue 4 (3-2023)
Abstract
In this research, the trend of spatial changes in extreme indices of temperature related to the health and agriculture sectors such as the number of frost days, number of summer days, number of icing days, number of tropical nights, growing season length, diurnal temperature range, cold spell duration index, and warm spell duration index were investigated for 54 synoptic stations throughout Iran for observational (1976-2005) and future (2025-2054) periods. Daily maximum and minimum temperature data of three regional climate models namely, CCSM4, MPI-ESM-MR, and NORESM1-ME from the CORDEX project under RCP4.5 and RCP8.5 scenarios were downscaled for each station using a developed multiscale bias correction method. Then, trends and changes of extreme temperature indices were investigated using Mann-Kendall and Sen’s trend line slope methods. The results indicated that the warm indices such as the number of summer days and tropical nights indices have had a positive trend at most stations in both observational and future periods. In contrast, cold indices like the number of frost days have had a decreasing trend in most stations. The results of cold and warm spell duration indices showed that most stations have had no trend for both periods. The growing season length has increased in more than 60% of stations (45% having a significant trend) mainly located in the northern, northwestern, and western regions of the country. Based on the results, it can be concluded that without considering thoughtful climate adaptation measures, some parts of the country may face health risks and limited habitability and agriculture in the future.
B. Shahinejad, A. Parsaei, H. Yonesi, Z. Shamsi, A. Arshia,
Volume 26, Issue 4 (3-2023)
Abstract
In the present study, the flow rate in flues containing lateral semi-cylinders (SMBF) was simulated and estimated under free and submerged conditions using back vector machine models (SVM), spin multivariate adaptive regression (MARS), and multilayer artificial neural network (MLPNN) model. In free flow mode, the dimensionless parameters extracted from the dimensional analysis include the ratio of upstream flow to throat width and contraction ratio (throat width to channel width), and in the submerged state, in addition to these two parameters, the depth-to-throat width, and bottom-depth parameters upstream depth were used as input and the two-dimensional form of flow rate was used as the output of the models. The results showed that in free flow mode in the validation stage, the MARS model with statistical indices of R2 = 0.985, RMSE = 0.008, MAPE = 0.87%, and the SVM model with statistical indices of R2 = 0.971, RMSE = 0.0012, MAPE =1.376%, and MLPNN model with statistical indices of R2 = 0.973, RMSE = 0.011, MAPE = 1.304% have modeled and predicted the flow rate. In the submerged state, the statistical indices of the developed MARS model were R2 = 0.978, RMSE = 0.018, MAPE = 3.6%, and the statistical indices of the SVM model were R2 = 0.988, RMSE = 0.014, 2%. MAPE = 4, and the statistical indicators of the MLPNN model were R2 = 0.966, RMSE = 0.022, and MAPE = 5.7%. In the development of SVM and MLPNN models, radial kernel and hyperbolic tangent functions were used, respectively.
T. Mohammadi, V. Sheikh, A. Zare,
Volume 26, Issue 4 (3-2023)
Abstract
Trend analysis of stream flow provides practical information for better management of water resources on the eve of climate change. Therefore, the present study investigated river flow variations during three decades as well as projections of future discharge in the Gorganrood watershed. The Man-Kendall method has been used to detect the trend and methods of Pettitt, SNHT, and Buishand to identify points of a sudden change in discharge time series in 8 stations of Aq Qala, Galikesh, Gonbad, Haji Ghoshan, Nodeh, Ramyan, Sadgorgan, and Tamar. The Mann-Kendall trend test showed the existence of a significant negative trend (flow reduction) on a daily and annual scale in all stations. Monthly, the strongest negative trend in Aq Qala, Galikesh, Gonbad, Haji Ghoshan, and Ramyan stations was related to July, but in Nodeh and Tamar stations, it was related to August and February, respectively. A decreasing trend was observed in all stations on a seasonal scale, but this trend was not significant in some seasons. The results of the analysis of change points in discharge showed that the change points in the data used in this study are more of a decreasing and in some cases incremental type and some stations, no change points have been identified at all. Therefore, the number of decreasing changes in the studied hydrometric stations is significantly higher than the incremental changes and is more visible from 1993 to 1997 and 2005-2007 in three and four stations, respectively. Also, the most incremental changes among the stations are related to the Aq Qala station in 2017 with a flow rate of 234 cubic meters per second. Investigation of the flow of the basin in the past decades showed significant monotonic and abrupt changes which are mostly toward decreasing the basin’s discharge. The downward trend in discharge values at different time scales for all hydrometric stations of the Gorganrood watershed, which will be more severe in the future due to global climate change, and increasing the region's water needs for various future use due to population growth and the expansion of industries can also be considered as a serious warning for policymakers, planners, and local managers to prevent a possible water crisis in the region in the future with proper planning.
V. Habibi Arbatani, M. Akbari, Z. Moghaddam, A.m. Bayat,
Volume 26, Issue 4 (3-2023)
Abstract
In recent years, indirect methods such as remote sensing and data mining have been used to estimate soil salinity. In this research, the electrical conductivity of 94 soil samples from 0 to 100 cm was measured using the Hypercube technique in the Saveh plain. 23 types of input data were used in the form of topographic and spectral categories. Land area parameters such as the Topographic Wetness Index (TWI), Terrain Classification Index (TCI), Stream Power Index (STP), Digital Elevation Model (DEM), and Length of Slope (LS) were considered as topographic inputs using Arc-GIS and SAGA software. Also, salinity spatial and vegetation indices were extracted from Landsat 8 images and were considered spectral inputs. The GMDH neural network was used to model salinity with a ratio of 70% for training and 30% for validation. The results showed that the soil salinity values were between 0.1 and 18 with mean and standard deviation of 5 and 4.7 dS/m, respectively. Also, the results of modeling indicated that the statistical parameters R2, MBE, and NRMSE in the training step were 0.80, 0.06, and 42.1%, respectively. The same values in the validation step were 0.79, 0.13, and 48.7%, respectively. Therefore, the application of spectral, topographic, and GMDH neural network indices for modeling soil salinity is effective.
E. Javiz, A. Jalalian, M.r. Mosaddeghi, E. Chavoshi, N. Honarjoo,
Volume 26, Issue 4 (3-2023)
Abstract
One of the most significant environmental crises in arid, semi-arid, sub-humid, and even humid regions is the destructive phenomenon of desertification and in the arid and semi-arid regions is wind erosion. These problems exist in large areas of Iran and it is necessary to use an environmentally friendly and economic method to solve this problem. In this study, calcium bentonite clay was used for the first time in Iran and perhaps in the worlds in the critical region of Sajzi, which covers an area of 65 hectares. Experiments were performed on the crusts after one year of mulching with bentonite clay. The results showed that wind erosion has a negative and significant correlation with the mean weight diameter and geometric weight diameter of aggregate, aggregates with diameters greater than 0.25 mm, shear strength, and penetration resistance. On the other hand, the results of the permeability test using double-ring and by three models (Kostiakov, Horton, and Philip) showed that the lowest mean square error (SSE) and the highest coefficient of determination (R2) belonged to the Kostiakov model in the mulch-applied and control samples. This result indicated the superiority of the Kostiakov model compared to Horton and Philip's models. Wind erosion intensity was also measured in situ using a portable wind tunnel at 20 points in the Sajzi region. The findings showed that mulch application has controlled more than 95% of soil erosion.
H. Nazaripour, M. Hamidianpour, M. Khosravi, M. Vazirimehr,
Volume 26, Issue 4 (3-2023)
Abstract
In this study, the decade variability of frequency and severity of drought in Iran has been investigated. The one-month scale data from the standardized precipitation-evapotranspiration index (SPEI 01) in the period 1956 - 2015 have been used. Based on the common numerical thresholds, the characteristics of the frequency and severity of drought for each pixel have been calculated and they are the basis for the analysis of the drought situation. Then, the frequency of drought severity classes was calculated and its trend was investigated using the non-parametric Mann-Kendall test. The findings indicated the spatio-temporal variability of drought frequency and intensity patterns in Iran. The frequency of mild droughts has decreased from south to north and from east to west; while the frequency of more severe droughts has increased from north to south and from west to east. The frequency of mild droughts in the southeast, northwest, and northeast has increased by 5 to 40 percent. While the frequency of more severe droughts in most parts of Iran has increased between 10 and 20 percent. Variability in the frequency of more severe droughts is more pronounced in the Central Plateau catchment area as well as in the Persian Gulf-Oman Sea. The trend of drought intensity is decreasing (drought intensification) at the same time as the prevailing rainfall regime in Iran. A significant increase in drought intensity (wet season intensification) is observed only in southeastern Iran at the same time as the monsoon regime. However, extra-arid and arid regions of southeastern Iran are affected by the frequency and severity of drought and have a high degree of vulnerability.
H. Ghazvinian, H. Karami,
Volume 26, Issue 4 (3-2023)
Abstract
Runoff is formed by spending some time after rain and significantly depends on rainfall intensity, soil moisture, and slope. One of the fundamental questions about runoff is the time that it starts to create. In this research, the runoff start time in sandy loam soil was evaluated experimentally under different conditions using a precipitation simulator machine. The rainfall intensity parameters of (60, 80, and 100 millimeters per hour) and the slope of (0 and 5 percent) were investigated. The rainfall was created in the three soil treatment types completely dry (Sdry), the dry soil that had been saturated 24 hours before the test (S24hrlag), and the dry soil that had been saturated 48 hours before the test (S48hrlag). Eighteen tests were conducted on this soil. At the end of each test, the soil moisture was measured. The experimental results were compared with the numerical model of Green-Ampt. According to the Kendall and Spearman correlation test results, as the rainfall be intense, the start time of the runoff is lower. Also, the runoff starts at a faster time in the slope of 5 percent for every three types of soil. Also, the results of starting time of the runoff in the soil with a delay of 48 hours in the rain compared to the soil with a delay of 24 hours in the rain are closer in all of the rainfall intensity and slopes compared to the case of dry soil. Therefore, in the experiments related to a delay of 24 hours, the time of the start of runoff decreases. While in tests with a delay of 48 hours, it was not much different from completely dry soil. Also, the Green-Ampt results are close to the experimental results (R2=0.9775), and the maximum difference between the two mentioned methods is 4.8 minutes. Therefore, it can be used with the Green-Ampt method to calculate the start time of runoff in sandy loam soil in different states of rainfall intensity and bed slope.
K. Shirani, R. Arfania, Y. Fereydoni, R. Naderi Samani, M. Shariati, M. Faizi,
Volume 26, Issue 4 (3-2023)
Abstract
Groundwater is always considered one of the important water resources, especially in arid and semi-arid regions of the world, such as Iran. In recent decades, it has decreased drastically due to excessive use. The objective of this study was to determine the best interpolation method and evaluation of the spatiotemporal variations for the groundwater level in the Sahneh-Biston plain of Kermanshah province during three decades from 1991 to 2020. At first, four Gaussian, linear, spherical, and power semi-variograms were obtained for observations. Then, the best semi-variogram and interpolation methods were selected among the evaluated methods for zoning the groundwater level in the region. The lowest value of the sum of RMSE, MBE, and MAE error criteria and the highest coefficient of determination (R2) between observations and estimates in all three decades and the average of the entire period were calculated and considered to evaluate the most appropriate semi-variogram and interpolation methods for spatial distribution. The results showed that the ordinary kriging method with Gaussian semi-variogram is the best method to estimate the groundwater level in the Sahneh-Biston plain. The average difference between the minimum and maximum groundwater levels based on the observation wells of the study area and the zonation method is from 1279 to 1372 meters and 1289 to 1409 meters during the studied period time, respectively. The groundwater level is placed in more depth with the proximity to the central and southern regions. The maximum decrease and increase of groundwater level variations have been 12 and 19 meters during three decades, respectively. Also, the underground water level variations during these three decades showed that both the second and third decades compared to the first decade and the third decade compared to the second decade have increased in more than 50% of the region. This increase can be caused by the optimum management and water use in these years. Therefore, groundwater level monitoring provides effective help for experts and users in planning and optimal management of groundwater for the sustainable development of water resources.
J. Abedi Koupaei, Z. Iravani,
Volume 27, Issue 1 (5-2023)
Abstract
Water pollution with petroleum products is one of the serious environmental problems in Iran. According to the importance of this issue, refining benzene by bio-absorbent has attracted much attention in recent years. The maximum permissible limit assigned by World Health Organization (WHO) for benzene in drinking water is 0.001 mg/L. In recent years, attempts made to develop inexpensive adsorbents utilizing abundant natural materials. Agricultural waste materials often employed as adsorbent may have potential marketing preference for wastewater treatment among other adsorbent types due to the low cost, environmentally friendly, naturally accessible, and efficiency. The objective of this study was to investigate the removal of benzene by batch and continuous techniques. In this study, the ash cone pine (APC) was used for the removal of benzene from aqueous solutions and its ability as an adsorbent, while the variable initial concentration of benzene, the amount of adsorbent, contact time, temperature, and pollutant's solution pH were investigated. Langmuirand and Freundlich Isotherm models were fitted to benzene adsorption equilibrium data. Kinetic models including pseudo-first order, pseudo-second order, intra-particle diffusion, and power function were used to describe kinetic data of benzene adsorption. The results showed that optimum benzene adsorption was observed at pH=7, and the optimum amount of adsorbent was 0.1 g. The observed equilibrium time was 10 minutes. The equilibrium adsorption capacities were 366 mg/g at 2000 mg/L initial benzene concentration. Linear and non-linear isotherm studies showed that equilibrium data better fitted the Langmuir isotherm model. Kinetic studies showed better applicability of the pseudo-second-order kinetics model. Column adsorption experiments were performed to check the absorbent performance during continuously injecting benzene solution into the adsorbent column until the adsorbent has been saturated to complete the studies on the introduced adsorbent. The results for columns with continuous inflow indicated that the maximum capacity of adsorption of benzene for the adsorbent column with a diameter of 3cm, and input concentration of 1000 mg/L, and an input rate of 100 mL/h for ash cone pine (APC) was 295 mg/g. The results of this experiment showed that APC has a high capability for the removal of benzene from aqueous solutions.
Z. Nazari, M. Moeinaddini, S. Zare, R. Rafiee,
Volume 27, Issue 1 (5-2023)
Abstract
Due to the environmental problems caused by wind erosion, it is necessary to stabilize the dust centers with mulches. The objective of the present study was to determine and compare the optimum vinasse mulches based on mechanical indicators for sensitive soil stabilization to wind erosion. In this research, vinasse (0, 100, 200 g) is combined with bagasse (0, 25, 50 g), ash bagasse (0, 25, 50 g), filtercake (0, 12.5, 25 g), and one-liter water (81 treatments). At first, the treatments were determined in the appropriate range of salinity and acidity (35 treatments) and in the next step, the mechanical indicators have been measured after mulching on laboratory trays (2×30×100 cm). Optimum mulches have been determined based on five indicators by mean comparison (Duncan). The mean comparison showed that treatments 33, 30, 34, 32, and 19 show the mean difference between the groups based on layer thickness, impact resistance, compressive strength, and shear strength properly. It can be concluded that vinasse (100 and 200 g) with 50 g bagasse reduces the crack coefficient greatly, and the application of vinasse, bagasse, and filtercake does not affect the compressive strength and impact resistance.
A.r. Emadi, S. Fazeli, M. Hooshmand, S. Zamanzad-Ghavidel, R. Sobhani,
Volume 27, Issue 1 (5-2023)
Abstract
The agricultural sector as one of the most important sectors of water consumption has great importance for the sustainability of the country's water resources systems. The objective of this study was to estimate the river water abstraction (RWA) for agricultural consumption in the study area of Nobaran in the Namak Lake basin. The RWA was estimated using variables related to morphological, hydrological, and land use factors, as well as a combination of their variables collected through field sampling. Data mining methods such as adaptive-network-based fuzzy inference systems (ANFIS), group method of data handling (GMDH), radial basis function (RBF), and regression trees (Rtree) were also used to estimate the RWA variables. In the current study, the GMDH24 model with a combined scenario including the variables of river width, river depth, minimum flow, maximum flow, average flow, crop, and the garden cultivated area was adopted as the best model to estimate the RWA variable. The RMSE value for the combined scenario of the GMDH24 model was found to be 0.046 for estimating RWA in the Nobaran study area. The results showed that the performance of the GMDH24 model for estimating RWA for maximum values is very acceptable and promising. Therefore, modeling and identifying various variables that affect the optimal RWA rate for agricultural purposes fulfills the objectives of integrated water resources management (IWRM).
A. Shahbaee Kotenaee, H. Asakereh,
Volume 27, Issue 1 (5-2023)
Abstract
Precipitation is one of the main elements of the Earth's hydro-climatic cycle and its variability depends on the complex and non-linear relationships between the climate system and environmental factors. Understanding these relationships and doing environmental planning based on them is difficult. Therefore, classifying data and dividing information into homogeneous and small categories can be helpful in this regard. In the present study, an attempt was made to prepare precipitation, altitude, slope, slope direction, and station density data for 3423 synoptic, climatological, and gauge stations in Iran in the 1961-2015 years’ period. These data were entered into fuzzy (FCM), self-organizing map neural network (SOM-ANN) models and precipitation-spatial zoning. The outputs of the two models were compared in terms of accuracy and efficiency. The results obtained from the output of the models have divided the rainfall conditions of Iran into four zones concerning environmental factors. Evaluations also showed that both models had high accuracy in classifying precipitation parameters; However, the fuzzy model has a relative advantage over the neural network model in the accuracy of results.
P. Papan, M. Albaji, R Kh. Peyghan,
Volume 27, Issue 1 (5-2023)
Abstract
Population growth and limited water and soil resources make it necessary to pay attention to the factors affecting food production, including the suitability of irrigation methods with agricultural lands. The objective of this study was to assess land suitability for surface, drip, and sprinkler irrigation methods based on a parametric evaluation system in an area of 250 hectares in the Shahid Rajaei plain of Khuzestan. Soil properties were analyzed, then suitability maps for different irrigation methods were prepared using a geographic information system (GIS). The results showed that for surface irrigation, 704 ha (31.3%) was marginally suitable (S3), 866 ha (38.5%) was currently not suitable (N1), and 680 ha (30.2%) was permanently not suitable (N2). For drip irrigation, 8 hectares (0.4%) are highly suitable (S1), 644 hectares (28.6%) are moderately suitable (S2), 52 hectares (2.3%) are marginally suitable (S3), 866 hectares (38.5%) were currently not suitable (N1), and 680 hectares (30.2%) were permanently not suitable (N2). For sprinkler irrigation, 652 hectares (29%) are moderately suitable (S2), 52 hectares (2.3%) are marginally suitable (S3), 866 hectares (38.5%) are currently not suitable (N1), and 680 hectares (30.2%) were permanently not suitable (N2). According to the results, sprinkler irrigation with an irrigation capability index of 29.9 to 60.7 in 2242 hectares (99.6%) is preferable to other irrigation methods. Drip irrigation in 8 hectares (0.4%) was found to be the most suitable method. The main limiting factors in using all three irrigation methods included salinity, alkalinity, and drainage. Also, soil calcium carbonate was added to the limiting factors in drip irrigation.
R. Mousavai, M. Rasouli Sadaghiani, E. Sepehr, M. Barin,
Volume 27, Issue 1 (5-2023)
Abstract
can provide useful information about P adsorption and the factors affecting it. A batch experiment was performed with phosphorus concentrations (0 to 35 mg/L) in two soils with different electrical conductivity (EC) (2 and 15 dSm-1) by a variety of biochar treatments including simple apple-grape biochar (BC), rock phosphate- biochar (BC-RP), enriched-biochar (BC-H3PO4-RP), enriched-biochar (BC-HCl-RP), triple superphosphate (TSP), and control (Cont). The results indicated that phosphorus sorption capacity varied between the soils. Biochar treatments were effective in reducing the phosphorus adsorption of both soils. Due to BC-H3PO4-RP and BC-HCl-RP treatments, the maximum phosphorus adsorption of soils decreased in S1 soil by 14 and 23 % and in S2 soil by 26 and 19%, respectively. Also, the use of these treatments decreased the parameters of Langmuir absorption intensity (KL) of S1 soil to 0.085 and 0.066, respectively and S2 soil to 0.11 and 0.15, L/mg respectively, and Freundlich absorption capacity (KF) of S1 soil decreased to 19.2 and 22.5 and S2 soil to 28.2 and 28.1 L/kg, respectively. Enriched biochars significantly reduced the buffering indices of both soils indicating phosphorus adsorption decreased and increased the availability of phosphorus for the plant. The standard phosphorus requirement of S2 soil was lower than S1 soil by both equations. Therefore, enriched biochar can be an effective strategy to increase phosphorus availability and reduce the use of chemical fertilizers in saline and non-saline conditions; however, more field studies are needed for a clear understanding of the potential of P-enriched biochar as a fertilizer alternative.
M. Khoshoei, H.r. Safavi, Abbas Kazemi,
Volume 27, Issue 1 (5-2023)
Abstract
Drought is a continuous period of lack of rainfall that leads to damage to a variety of water consumers, especially in the agricultural sector and reduces their yield. Drought is considered one of the unpredictable disasters. Drought is different from other natural disasters such as floods, earthquakes, storms, etc. Based on the type of meteorological, hydrological, or agricultural droughts, various indices are designed to assess droughts such as SPI, PDSI, and SWSI. The objective of this study is to evaluate an integrated index that includes the main causes of drought. The integrated index includes various drought factors such as meteorological, hydrological, agricultural, socio-economic, and environmental. Isfahan province has been selected as a case study due to successive droughts in recent decades. A combination of static and dynamic layers has been used for designing the integrated index. Static layers include land use, slope, and soil type of the basin. Dynamic layers include precipitation, average temperature, available surface water, available groundwater, groundwater quality, and cultivated area. The results showed that the highest water stress occurred in the 1386 and 1391 years in the province and the lowest water stress and wet season in different parts of the province in 1387 and 1390 years.
H. Siasar, A. Salari,
Volume 27, Issue 1 (5-2023)
Abstract
Access to large precipitation data with appropriate accuracy can play an effective role in irrigation planning and water resources management. Satellite images generate high, wide, cheap, and up-to-date data is a good way to estimate precipitation. In this research, the Google Earth engine system and precipitation products from satellite images of PERSIANN and CHIRPS models in daily, monthly, and annual time intervals were used to evaluate and validate the amount of precipitation in Bandar Abbas station during the statistical period of 1983-2020. The results showed that the precipitation estimation by PERSIANN and CHIRPS satellites on a monthly and annual scale is more accurate than the daily scale. The highest correlation coefficient and the least RMSE belonged to the PERSIANN algorithm on monthly and annual scales. The value of the correlation coefficient in the PERSIANN algorithm on daily, monthly, and annual scales is equal to 0.32, 0.83, and 0.94, respectively. The correlation coefficient in the CHIRPS algorithm in daily, monthly, and annual scales is equal to 0.24, 0.71, and 0.90, respectively. The coefficient of determination (R2) of PERSIANN and Chrips algorithms on a monthly scale were 0.89 and 0.70, respectively, and for an annual scale were 0.88 and 0.80, respectively. The general conclusion of this study indicated that the accuracy of the two algorithms in determining the spatial pattern of rainfall on a monthly and annual scale is appropriate, and the PERSIANN algorithm had a higher accuracy on a monthly time scale.
M. Ghorbanian, D.r A.m. Liaghat, M. Fasihi Harandi,
Volume 27, Issue 1 (5-2023)
Abstract
Many of the social and security issues of the Zayandeh-Rud basin are the result of the government becoming the sole agent of governance and the gaps in the command-control governance structure. It is clear that the main issue to achieve participatory governance is the gap in stakeholder relations and the lack of a coherent and flexible agenda to improve these relations. Therefore, the objective of this study was to provide solutions for improving relationships as a starting point and key to reforming the governance structure. The management and transition framework (MTF) was used to analyze the stakeholders and the relationships between them that showed the concentration of tension in the relationship between Isfahan farmers and the Ministry of Energy (Isfahan Regional Water Company). Also, using the MTF database and the participatory model building (PMB) based on interviews with key Stakeholders, the causes, solutions, consequences, and obstacles to improve these relationships were extracted in the form of causal circles. Finally, by focusing on the solutions, the conceptual model of improving the relations between the Stakeholders and the solutions presented by the interviewees, including holding local elections and convening the Zayandeh-Rud Basin water assembly, mediation with interdisciplinary knowledge approach, participatory management working groups, the formation and strengthening of the economic committee improve the livelihood of farmers, the holding of government meetings with farmers and industries were reviewed.
S. Falahati, E. Adhami, H. Owliaie,
Volume 27, Issue 1 (5-2023)
Abstract
Due to the importance of nickel (Ni), and the effect of common soil additives on Ni fractions distribution, the present study was conducted to evaluate the effect of zeolite and vermicompost on nickel fractions over time. The experimental design consisted of a factorial combination of two levels of vermicompost (zero and 2% by weight), three levels of zeolite (zero, 4% by weight of Firoozkooh zeolite, and 4% by weight of Semnan zeolite), and two soil texture (clay and sandy loam) in a completely randomized design in triplicates. Treatments were contaminated with 50 and 100 mg nickel/kg soil. Ni fractions were extracted and measured at 20 and 60 days. The results showed that in initial soils, Car-Ni in sandy loam soil was higher than in clay soil, while the content of Fe, Mn- Ox Ni, OM-Ni, and Res-Ni in the clay soil was higher. In sandy loam soil, more nickel was recovered in Exch- and Car-fractions, while nickel recovery was higher in Mn, Fe-Ox Ni, OM-Ni, and Res-Ni in the clay texture. Zeolite addition caused a significant decrease of Exch- and Car-Ni in the clay soil on 60d and 100 mg/kg Ni level. Exch-Ni was reduced due to vermicompost application. Vermicompost application caused the decrease in Fe, Mn Ox-Ni in both studied soils and times, and OM-Ni increased by vermicompost application. Aging generally reduces the Exch-Ni but changes in Car-Ni over time depending on the soil texture. Aging did not affect Mn, Fe-Ox Ni, and Res-Ni, while OM-Ni increased over time in clay soil.
M. Dehghanian, H. Tabatabaee, H. Shirani, F. Nikookhah,
Volume 27, Issue 1 (5-2023)
Abstract
In sustainable agriculture, cow manure is used for greater productivity, a rich source of E-Coli pathogenic bacteria. The objective of this research was to investigate the simultaneous effect of the fractionation size of cattle manure and irrigation water salinity on the retention of E-Coli bacteria in the depths of the sand column with a height of 10 cm under saturated flow. Four different particle fractions of cow manure (1-2, 0.5-1, 0.25-0.5, and smaller than 0.25 mm) were added to the surface of the sand column at the scale of 30 tons per hectare, then leaching was done with different salinities (0, 0.5, 2.5, 5, and 10 dS/m) up to 10 pore volumes, then samples were taken from the depths of 0, 3, 6, and 12 cm. The number of bacteria in each sample was determined by the live counting method. The results showed that the effect of all sources of change and their interaction effects on the retention of bacteria in the soil is significant at the level of 5%. Salinity had a negative effect on the retention of bacteria, and the highest and lowest values of the relative concentration of bacteria (the result of dividing the number of bacteria in each soil depth by the initial number of bacteria in the desired manure treatment) were in 0 dS/m and 10 dS/m salinity of leaching water, respectively. By decreasing the size of cow manure particles due to the increase in hydrophobicity and blocking of preferential pores, the retention of bacteria decreased in all investigated soil depths. The highest and lowest retention of bacteria in the soil were investigated in the largest cow manure particle size (1-2 mm) and the smallest cow manure particle size (less than 0.25 mm), respectively. In addition, the highest relative concentration of bacteria in the soil was seen in the depth of 0-3 cm, and no significant difference was seen in other soil depths.
S. Yaghobi, Ch.b. Komaki, M. Hosseinalizadeh, A. Najafinejad, H.r. Pourghasemi, M. Faramarzi,
Volume 27, Issue 1 (5-2023)
Abstract
Frequency analysis of daily rainfall or return period of rainfall and flooding events is very important considering the behavioral complexity in water resources management; because ignoring it can lead to urban destructive floods. In the present research, three distribution functions of Pearson, Beta, and Gamma were compared to investigate and select the most appropriate distribution function for the precipitation data acquired from meteorology stations and CHIRPS satellite in seven stations in the watershed of Bustan Dam. Statistical analyses showed that satellite data were ineffective to estimate daily precipitation due to high errors in RMSE, MAD, and NASH. Meteorological data were used to spot the best distribution. Google Earth Engine and Python programming language were used. Then, the selected distribution function was used to determine the maximum daily rainfall, frequency probability, and return period of 2, 10, 50, 100, and 200 years. The results of the goodness of fit test, Error Sum of Squares, Bayesian Information Criterion, Akaike Information Criteria well as Kullback-Leibler Divergence showed that in five stations of Kalaleh, Qarnaq, Golestan National Park, Golestan Dam, and Glidagh, the Pearson function is the most suitable distribution function. Also, in the other two stations (Gonbad and Tamar), the Beta function was recognized as a suitable function. However, Gamma distribution in the study area is not efficient. So, it can be concluded that heavy and irregular rainfall can be effective in choosing the best distribution function at each station. Therefore, it is recommended to consider the maximum possible rainfall and as a result of the possible occurrence of floods with principled and accurate management to prevent human and financial losses in susceptible areas, especially in the study area.